Ракеты тоже могут "плакать"
Ракеты тоже могут "плакать"
На ракетах первого поколения Р-12, Р-14 и Р-16 по сравнению с королевскими был сделан качественно новый скачок с точки зрения их боевой готовности. Если ракеты на жидком кислороде могли находиться без подпитки только двадцать минут, а с подпиткой пять часов, то срок нахождения янгелевских ракет на боевом дежурстве уже составлял три месяца.
Развитие военной доктрины при становлении ракетно-ядерного щита сделало необходимым постановку вопроса о длительном нахождении ракет на боевом дежурстве. Это требование постепенно увеличивалось до пяти, затем десяти, а в конце концов и более лет. Комментарием к сказанному может служить такой факт: ракета Р-36 2М продемонстрировала свою полную боеспособность, простояв в шахте двадцать два года! Последнее стало возможным прежде всего при использовании высококипящих компонентов топлива.
Но длительное нахождение под компонентом возможно только при полной герметичности всех узлов топливной системы, то есть всех баков и магистралей на протяжении всего времени нахождения ракеты в полной боеготовности. Однако, как показала эксплуатация ракет в воинских частях, именно герметичность стала одной из больших проблем, с которой пришлось столкнуться в процессе рождения ракет второго поколения.
Первый сигнал, как это не покажется странным, поступил от вероятного противника. В августе 1963 года газета "Нью-Йорк Геральд Трибьюн" поместила маленькую заметку о том, что ракеты "Титан-П" могут быть сняты с боевого дежурства по причине утечек компонентов топлива. В других источниках появились сообщения, пояснявшие некоторые детали физики происходившего явления, связанного с развитием коррозии в алюминиевых сплавах при нарушении герметичности.
Для того, чтобы сохранить ракеты, находившиеся на боевом дежурстве, американцы установили процент предельно допустимой влажности в шахте (на уровне двадцати), поддерживая ее за счет специально созданной системы — приточно-вытяжной вентиляции с осушением воздуха. В целом следует отметить, что американцы несерьезно отнеслись к проблеме герметичности на начальном этапе. Именно из-за потери герметичности у них в дальнейшем вышла из строя космическая станция "Скайбл" и произошла самая крупная авария в полете, повлекшая гибель экипажа "Шаттла". Можно предположить, что не в американском духе было так долго заниматься проблемой герметичности в комплексе. Ведь на первый план у них выступала финансовая сторона дела. Именно по этой причине, очевидно, дальнейшее производство жидкостных боевых ракет в США прекратили и взяли курс на разработку твердотопливных ракет. За счет же принятых мероприятий были сохранены пятьдесят четыре ракеты "Титан". Последнюю из них сняли с вооружения в мае 1987 года, и все шахты были уничтожены. При этом оказалось, что загазованной вокруг была даже почва.
Взгляд на возникшую проблему герметичности топливных систем, включавших не только баки для компонентов, но и все связанные с ними магистрали, у специалистов в Советском Союзе был неоднозначен. Более того, даже полярен. Одни отнеслись к этому вопросу очень легко, не видя в нем особых проблем. Другие, основываясь на опыте американских ракетостроителей, не верили в возможность решения проблемы герметичности при длительном нахождении ракеты в заправленном состоянии.
Показательно, как отнесся к этому вопросу Главный конструктор, ракеты которого составляли основную мощь вооруженных сил, его реакция и последовавшие действия. Михаил Кузьмич поручил подготовить заинтересованным лицам ставший на повестку дня вопрос, а затем собрал специалистов конструкторского бюро и завода. Совещание состоялось, как он любил, в субботу, чтобы излишне не отвлекались сотрудники и не имеющие непосредственного отношения руководители среднего звена. И что не менее (а может быть более) важно, чтобы деловой атмосфере работы не мешали министерские звонки и другие вышестоящие инстанции со своими безапелляционными требованиями бесконечных справок.
Вопрос был поставлен конкретно четко, а главное достаточно жестко:
— Товарищи! Нет необходимости говорить в этой аудитории о серьезности стоящей перед нами проблемы и значении ее для обороны страны. На сегодня это задача первостепенной государственной важности. И мы обязаны ее решить. Ракеты должны стоять на боевом дежурстве требуемое Заказчиком время, гарантированно сохраняя свою работоспособность. Бытующее мнение, в том числе и среди отдельных наших товарищей, решить эту задачу обходным маневром за счет перехода на твердотопливные двигатели для нас неприемлемо. Прошу Всех присутствующих принять это к сведению. В данной ситуации другие суждения не имеют права на существование. К переходу на твердотопливную тематику ни ОКБ, ни завод просто сейчас не готовы. В стране еще не налажено производство достаточно эффективных твердых топлив, тем более в нужных количествах, и отсутствует опыт по созданию корпусов мощных твердотопливных маршевых двигателей. Перейдя же сейчас на новый тип ракет, мы просто разденем государство. Подумайте о народе. Что он нам скажет?
Следует отметить, что, основываясь на решении проблемы американцами за счет создания приточно-вытяжной вентиляции, подобные предложения рассматривались и в конструкторском бюро. Однако они встретили решительное "непонимание" в первую очередь со стороны Главного конструктора. Когда его пытались убедить в этом, он неизменно парировал:
— Думайте!
Несомненно эта реакция определялась технической политикой М.К. Янгеля, который в описываемый период уже был одержим идеей минометного старта и смотрел далеко вперед. Без решения задач герметизации невозможно было бы и длительное нахождение запечатанной ракеты на старте. Состоявшееся совещание у Главного конструктора положило начало работам по изучению проблемы герметизации систем ракеты, проблемы принципиально новой и невероятно сложной, к решению которой были подключены многие ведущие организации страны.
На основе разработанной комплексной программы начались широкомасштабные исследования. На днепропетровском заводе в оперативном порядке были изготовлены необходимые опытные конструкции, имитировавшие отдельные узлы и соединения. На этой материальной части в лабораториях конструкторского бюро и завода под руководством опытных специалистов практически днем и ночью велись непрерывные исследования. Возникшая проблема, в том непрекращавшемся непрерывном соревновании двух противоборствующих систем, имела важнейшее государственное значение. Проводимые работы вышли за стены территории завода. В воинских частях также были выделены для этих целей специальные ракеты.
— Очень часто, — вспоминает ведущий специалист конструкторского бюро в области материаловедения Ф.П. Санин, один из организаторов всех работ, впоследствии защитивший по проблеме герметичности докторскую диссертацию, — часов в десять-одиннадцать вечера в технологических подразделениях конструкторского бюро мог появиться Михаил Кузьмич, который не только постоянно интересовался ходом работ, но и практически сам вникал в них на уровне исполнителя. И что особенно я отметил для себя, он оказывал большое влияние на Александра Максимовича Макарова, а о других уже и не стоит говорить. А как он вел себя в самых сложных ситуациях! Если он был прав, то оппоненту завидовать не приходилось, но самое главное, что эту процедуру осуществлял вежливо, тактично, железной логикой и доказательностью, никогда не опускаясь до уровня бытовых разгонов с угрозами и оскорбительными сентенциями.
Вспоминается любопытный эпизод. Мы почти неделю работали по герметичности с представителями Заказчика из Главного управления ракетного вооружения. Шло рутинное согласование документации, которая затем должна была быть узаконена. В это время уже был накоплен большой опыт по решению задач герметичности и на основе их предлагался ряд новых подходов. Но военные представители неожиданно проявили несогласие с некоторыми нашими взглядами на проблему. Как потом стало ясно, проталкиваемые идеи фактически были заимствованы ими у американцев и сводились к предложению вентилировать отдельные отсеки ракеты. Кстати, американцы вентилировали всю шахту в целом. Наши же предложения сводились к более простому и надежному способу — использованию сорбентов, которые впоследствии и были применены.
Не добившись каких-то существенных успехов в согласовании предложений, вечером мы по телефону доложили о сложившейся ситуации Михаилу Кузьмичу. Об этом он нас попросил заранее. Неожиданно Главный пригласил всех к себе в кабинет. Дальнейшие события развивались по совершенно не прогнозируемому сценарию. Выслушав обе стороны и никак не комментируя высказывания, он поднял трубку аппарата правительственной спецсвязи. На противоположном конце был начальник Главного управления вооружения ракетных войск Н.Н. Смирницкий:
— Слушай, Николай Николаевич, — в своей обычной спокойной манере начал Михаил Кузьмич, — по-моему твои ребята (а эти ребята все носили полковничьи звания) несерьезно относятся к делу. Им очень нравится Днепр (а это был разгар лета). Что им передать?
И с этими словами он отвел трубку аппарата на некоторое расстояние так, чтобы присутствующие могли слышать реакцию своего руководства из Москвы. Когда Н.Н. Смирницкий закончил комментировать поведение своих подчиненных, Михаил Кузьмич положил трубку и обратился к присутствующим:
— Вы разговор слышали, делайте выводы.
Оперативный, короткий по времени и блестяще проведенный диалог сделал ненужным бесконечные утомительные споры, убеждения противной стороны. На следующий день оперативно все документы были подписаны.
К этому следует добавить, что точно также Главный конструктор разговаривал с генералами в любых других более сложных ситуациях, что приходилось неоднократно наблюдать и на коллегиях в Министерстве, с министрами, академиками и лицами самых высоких правительственных рангов. Уверенность в таком поведении ему придавала глубокая убежденность в правоте решений того дела, которому он себя посвятил…
О том, насколько серьезно проблема герметичности решалась в тесном сотрудничестве конструкторов и заводских технологов при самом непосредственном участии представителей заказчика, свидетельствует такой факт. На регулярных заводских оперативках о состоянии дел в производстве, стало модным новое слово.
— А вы знаете, что такое диффузия? — неизменно обращался к присутствовавшим директор завода А.М. Макаров, начиная обсуждать состояние вопроса о герметичности ракет.
В процессе изучения возникшей проблемы необходимо было дать четкий ответ на два вопроса: какой уровень герметичности требуется и как его можно реализовать.
В такой постановке обязательно следовало иметь достоверную информацию о герметичности собственно металла, из которого изготовлены элементы емкостей и трубопроводов, сварных швов и различного рода соединений. Но даже опытные физики — материаловеды не представляли и приблизительно, какими коварными окажутся самовоспламеняющиеся высококипящие компоненты топлива. Казалось бы, о какой проницаемости может идти речь, когда имеешь дело с металлом, с помощью которого решаются автоматически все проблемы герметичности на морских судах и подводных лодках. А самые различные хранилища для жидкостей и газов! Все они надежно выполняют свои разделительные функции.
Однако, как вскоре стало ясно, на первый план вышли факторы времени и диффузионной способности компонентов топлива, которые "объединившись" в сочетании разрушили все традиционные представления о надежной защите металлом от действия окружающей среды.
Оказалось, что при малых толщинах алюминиевый сплав не является абсолютно герметичным, особенно на трубопроводах небольших диаметров. В связи с этим все алюминиевые магистрали были заменены на стальные.
Сразу выяснился и крупный недостаток принимавшихся конструктивных решений, связанных с применением разъемных соединений. То, что раньше обеспечивало мобильность сборки, стало одним из крупнейших недостатков в новых требованиях к ракете. Все соединения практически оказались с позиций длительного нахождения под компонентом негерметичными… Особенно сильно протекали ниппельные, плоско-прокладочные и резьбовые. Был взят курс на штуцерно-торцевые и сварные соединения. Целеустремленно и методично проводившаяся работа в течение несколько лет дала результаты, способные поразить любое воображение: количество разъемных соединений на ракете уменьшалось на порядок (вместо двухсотдвадцати их осталось только двадцать два).
На соединение трубопроводов сваркой перешли даже в цехе общей сборки ракеты, что до этого вообще казалось неосуществимым, так как считалось, что без ниппельных соединений ракету собрать вообще невозможно. Для этих целей на Южном машиностроительном заводе совместно с Институтом электросварки имени Е.О. Патона и Украинским научно-исследовательским институтом технологии машиностроения были созданы специальные автоматы, что вдобавок позволило увеличить степень механизации сборочных работ.
Но на этом пути поджидала новая неприятность. Оказалось, что из-за неизменных микродефектов сварные швы сами по себе далеки от совершенства и поэтому не являлись абсолютно герметичными. А кроме сварных швов для соединения трубопроводов на ракете — еще почти один километр (!) самых различных сварных швов на топливных емкостях.
В довершение ко всему выяснилось, что микродефекты, вызывающие проникновение компонентов топлива, образуются не только в самом шве, а чаще даже в околошовной зоне вследствие недостаточного качестве основного металла.
Обнаруженная неожиданно негерметичность сварных швов поставила исполнителей в щекотливое положение.
— Выступая с предложением перед Главным о переводе большинства разъемных соединений на сварные, — рассказывает Ф.П. Санин, — мы были уверены в успехе. Когда же обнаружилось, что они текут, то не сразу решились об этом сказать Михаилу Кузьмичу…
Рентгеноструктурный анализ показал, что главными дефектами макро- и микроструктуры сталей и алюминиевых сплавов являлись неметаллические включения оксидов, карбидов, нитридов, а также газовые включения.
Для устранения указанных дефектов и придания металлу плотно упакованной структуры на заводах-поставщиках были внедрены новые уникальные металлургические переделы: одинарный и двойной вакуумные переплавы металла, переплав в переменных физических полях, рафинирование и даже процеживание жидкого металла через стеклоткань. Эти технологические процессы позволили понизить содержание растворимых в структуре сплава газов до тысячных долей процента. Например, содержание водорода в ста граммах металла было доведено до четырех десятых в кубическом сантиметре, неметаллические включения были практически исключены полностью, кислорода содержалось не более восьми тысячных процента. О масштабности предпринятых мер, приведших к созданию качественно новых структур свидетельствует и тот факт, что на всех металлургических заводах, поставлявших металл, был введен автоматизированный ультразвуковой контроль полуфабрикатов, которые затем обязательно проходили входной контроль на Южном машиностроительном заводе. Дополнительно к проведенным мероприятиям были сформулированы специальные требования к сварочной проволоке, подготовке кромок под сварку и количеству допустимых подварок.
Результаты этих мероприятий превзошли самые смелые предположения. Если до введения описанных новых технологических процессов обнаруживалось по причине негерметичности металла до двадцати проявлений просачивания компонента, то после внедрения новой технологии начиная с 1970 года — ни одного!
Не обошлось без последствий и введение стальных трубок вместо алюминиевых. В результате возникла проблема сварки разнородных металлов: алюминий — сталь, титан — сталь, сталь — ниобий и других сочетаний, которые применялись не только на ракетах, но и на космических аппаратах. Для реализации этих вопросов в городе Орджоникидзе (Северная Осетия) был построен специальный цех изготовления биметаллических переходников.
В довершение было установлено (о чем имелись отрывочные сведения из американских источников), что, проникая через поры металла, компонент не только загазовывает воздух, но и производит разрушительную работу. Соединяясь с влагой, неизменно присутствующей в воздухе, компонент образует кислоту, которая, в свою очередь, вызывает коррозию в алюминиевом сплаве, тем самым еще больше увеличивая негерметичность отсека. Несколько позднее было выяснено, что при относительной влажности воздуха ниже сорока процентов названная реакция не происходит.
На всех ракетах, начиная с ракеты Р-36, для исключения пустых объемов, создаваемых за счет днищ и переходных отсеков, баки окислителя и горючего стали единой емкостью, в которой компоненты топлива разделены промежуточным днищем. Естественно, возник вопрос о возможности проникновения окислителя из верхней полости в нижнюю, где находится горючее. В лучшем случае, говорили оппоненты, будут образовываться нерастворимые нитриды, которые, естественно, могут забить форсунки работающего двигателя. А худший вариант при соединении — взрыв, как это было на ракетах "Титан-П". С целью проверки этих серьезных опасений был проведен смелый эксперимент, который в случае отрицательного исхода мог поставить знак вопроса над конструкцией бака с промежуточным днищем. Для этих целей изготовили опытную емкость с заведомым дефектом в промежуточном днище. Результаты испытаний превзошли все ожидания — образования нитридов и ситуации, инициирующей взрыв, не наблюдалось.
При анализе причин возникновения негерметичности было обнаружено новое неожиданное явление.
Как известно, в процессе прокатки исходной заготовки происходит одновременно и формирование ее структуры, приводящее к образованию волокон в направлении деформирования. Этого оказалось достаточно для того, чтобы в направлении прокатки, как по каналам, распространялся компонент. Пришлось в техническую документацию вводить дополнительное требование, согласно которому фланцы, мембраны и другие подобные детали должны были изготавливаться только из поковок и штамповок. При этом, если металл имел волокнистую структуру, волокна в готовой детали следовало направлять параллельно ее стыкам.
Проводились и другие мероприятия для предотвращения возможных непредвиденных ситуаций. В частности, предъявлялись особые требования по качеству поверхностей перед контролем на герметичность, обязательному контролю усилий предварительной затяжки болтов в разъемных соединениях. Прокладки, которые поступали на сборку, находились в специальных бархатных подложках и с ними обращались, как с драгоценными изделиями. Были введены специальные ограничения на смазку при сборке разъемных соединений, которых, кстати, в топливных системах практически не осталось.
Учитывая то, что после введения всех мероприятий, тем более, когда относительная влажность воздуха в транспортно-пусковом контейнере стала поддерживаться на уровне сорока процентов, лакокрасочное покрытие перестало играть антикоррозионную роль. Поэтому было принято решение снять его с поверхности ракеты. Лакокрасочное покрытие оставили только на сварных швах, на которые после всех других операций и контроля герметичности на общей сборке ракеты сначала наносился анаэробный герметик.
Это мероприятие дало неожиданный эффект: масса сухой ракеты уменьшилась сразу на пятьдесят килограммов. А это очень важно. Образовавшийся резерв веса давал возможность реализации внедрения новых предложений.
Все описанные исследования проводились не в одночасье, а внедрялись, естественно, постепенно. В частности, когда на первых ракетах Р-36 наблюдались утечки компонентов топлива во время стоянки на боевом дежурстве, были даже предложения чисто конструкторского плана — закрыть все подозрительные места полиэтиленовой пленкой. Но оказалось, что через нее за счет диффузии компоненты топлива проникают. Замеры показали, что утечки не составляли более ста миллиграммов в сутки. Для поглощения паров компонентов топлива были разработаны специальные сорбенты, создана переносная химическая лаборатория и отработана технология ликвидации паров. Значение этих работ трудно переоценить: удалось спасти пятьдесят ракет, находившихся на боевом дежурстве. Характерно, что ни на одной из "вылеченных" машин негерметичность в дальнейшем не повторилась.
Для контроля загазованности в отсеках ракеты на определенном этапе устанавливались датчики дистанционного контроля, которые передавали информацию о состоянии атмосферы. Был определен и допустимый ее уровень, который гарантировал коррозионную безопасность металла ракеты. Он соответствовал 0,005 милиграмма компонента топлива на литр воздуха. В этом случае ни о какой загазованности окружающей среды не могло быть и речи. Исходя из этого устанавливался и предельный уровень негерметичности при контроле ее в заводских условиях. Суммарным для узла ракеты, например бака, он должен был быть равным одной десятитысячной литра-микрон в секунду и одной стотысячной в тех же единицах для локальной течи.
Названные специфические термины были хорошо понятны только узким специалистам, занимавшимся этой проблемой. Но ведь к узакониванию уровней допустимой негерметичности был привлечен широкий круг лиц. Об удивительной способности М.К. Янгеля мгновенно схватывать суть вопроса, выделив главное, а затем, как будто он имеет с этим вопросом дело ежедневно, образно донести его до аудитории, — вспоминает цитировавшийся уже Ф.П. Санин. Произошло это на коллегии в Министерстве общего машиностроения при обсуждении проблемы герметичности:
— Перед началом заседания Михаил Кузьмич спросил, на что надо обратить внимание в докладе. Затем поинтересовался, что это за единица измерения литр-микрон в секунду. Удивляюсь, как он быстро все усвоил и потом, уже на трибуне, втолковывал генералам и министерским работникам, какие собираемся применять и применяем точные методы для контроля состояния загазованности. Он образно показал присутствовавшим, что если для сравнения взять объем булавочной головки, то мы способны контролировать величину в сто тысяч раз меньшую, которая и определяется как литр-микрон в секунду. При этом о вопросах диффузии Главный говорил как заправский специалист — физик. Это действительно было убедительно и смело…
В последующем относительная влажность воздуха в ракетах, стартовавших из транспортно-пускового контейнера, поддерживалась естественной конвенцией воздуха, что достигалось благодаря грамотному использованию градиента возникающей температуры и пассивных осушителей типа силикагеля.
Одной из последних преград, завершавших решение задачи ампулизации ракеты, явилась так называемая проблема газового фона в отсеках ракеты и транспортно-пускового контейнера, возникшая в начале семидесятых годов. Указанный фон создавался за счет газовыделения неметаллических материалов и последующего воздействия газов на систему дистанционного контроля загазованности и некоторые элементы ракеты, а также неизбежно присутствовавших паров компонентов топлива. Но и этот рубеж был успешно преодолен.
Ракета второго поколения Р-36 явилась первой межконтинентальной, на которой была решена проблема длительного дежурства в заправленном состоянии. Первый срок нахождения на боевом дежурстве был определен в пять лет. Путь к созданию ампулизированных межконтинентальных баллистических ракет был открыт.