Чего-то мы не уловили
Чего-то мы не уловили
В начале двадцатых годов многие марки высококачественной стали на заводах Советского Союза совершенно не изготовлялись, и стояла задача организовать их производство. Работая в лаборатории электрометаллургии Московской горной академии, мне пришлось принять участие в разработке производственного процесса и определении основных показателей одной из новых марок стали.
Общим руководителем научно-исследовательской работы был профессор Н. А. Минкевич. Решили начать экспериментирование со сталью, содержащей, помимо других элементов, также и молибден. В то время молибденовые стали у нас в стране не производились, сведения о свойствах молибдена и его поведении в процессах сталелитейного производства были скудными.
Николай Анатольевич Минкевич предложил мне изучить сам процесс производства, и на первом же совещании исследователей, участвующих в работе, сказал: «Необходимо выплавить хромистую сталь с содержанием одного процента молибдена, какой угар молибдена вы думаете принять при расчёте шихты?»
Я только год назад закончил курс обучения, а на всех лекциях по производству стали профессора и преподаватели академии утверждали, что угар молибдена достигает сорока процентов, и я уверенно ответил:
— Сорок процентов.
— Вы будете вести плавки в небольшой печи, у вас угар будет больше. Я советую вам принять в расчёте не сорок, а пятьдесят процентов, — посоветовал Минкевич.
Так я и поступил.
После отливки первых слитков новой марки образцы были направлены в лабораторию для определения химического состава. Мы ожидали, что содержание молибдена будет в пределах одного процента, но, к своему удивлению, в полученном из лаборатории сертификате в рубрике «молибден» стояло два процента! Я никак не мог понять, откуда они взялись. С листом бумаги, полученным от химиков, я направился к профессору Минкевичу.
— Ну, какие тут исследования можно вести, если у нас даже молибден не могут определять! — в раздражении произнёс Минкевич, выслушав моё сообщение о том, как я проводил расчёты и вёл плавку. — Одним словом, «химики»!
Мы настолько верили в то, что молибден сильно окисляется в процессе производства стали, что не могли допустить, что совершаем ошибку, принимая в своих расчётах такой высокий угар этого металла.
— Будем считать, что в стали содержится один процент. Другого выхода у нас нет, — решительно заявил Минкевич.
Прошло более двух лет. И вот как-то уже в сталеплавильном цехе крупповского завода в Эссене, наблюдая за ходом процесса выплавки одной из сталей сложного химического состава, содержащей наряду с другими элементами также и молибден, я увидел распоряжение начальника сталеплавильного цеха:
«При расчёте шихты исходить из того, что молибден ведёт себя так же, как никель, то есть не окисляется». Слова «не окисляется» были подчёркнуты, а внизу стояла подпись — Мюллер.
Я был настолько обескуражен прочитанным мною указанием Мюллера, что немедленно пошёл разыскивать Тевосяна.
— Ты только посмотри. Мы во всех наших расчётах принимаем угар молибдена в сорок процентов, а Мюллер исходит из того, что молибден совершенно не окисляется!
— Да, действительно, очень интересное распоряжение. Нам надо внимательно проследить от начала до конца за всем ходом плавки, — сказал Тевосян. — Давай это сделаем вместе, чтобы не упустить чего-либо.
И мы встали к печи с секундомерами в руках. Плавка проводилась дуплекс-процессом — в двух печах. Стальной лом, содержащий отходы молибденсодержащих марок стали, вместе с чугуном загружали в мартеновскую печь, где в процессе плавки окислялись примеси, и сталь с очень низким содержанием углерода в жидком виде передавалась в электропечь, в которой и заканчивался процесс сталеварения.
— Неужели молибден действительно не будет окисляться? — спросил меня Тевосян. — Ведь назначение самого технологического процесса, происходящего в первой печи, и состоит в том, чтобы окислить все примеси, способные окисляться.
— Ты посмотри только на эти шлаки!
Рабочие мартеновской печи в это время забрасывали через загрузочные окна железную руду и скачивали жидкий, чёрный, железистый шлак.
— Ну, если даже в этих условиях молибден не окисляется, то он действительно не окисляется, и все наши соображения по угару молибдена ни на чем не основаны.
— Чтобы быть полностью уверенными, я думаю, что по ходу плавки следует отбирать пробы и проследить по ним за поведением молибдена, — предложил Тевосян.
Мы уже работали в цехе третий месяц, и нас здесь хорошо знали. Мы сделали, как решили: отбирали пробы и в цеховой химической лаборатории определяли содержание молибдена. От первой и до последней пробы результаты не изменялись, и цифра содержания молибдена в 0, 20 процента стояла на каждом листке, получаемом нами из лаборатории.
Мюллера в цехе не было, но в конце смены он появился и, подойдя к нам, спросил, почему мы так интересуемся содержанием молибдена в стали.
Тевосян сказал:
— Мы полагали, что молибден будет сильно окисляться.
Мюллер ответил:
— Несколько лет тому назад и у нас так же многие думали. Дело в том, что в одном из журналов появилась статья о сильном окислении молибдена в процессе производства сталей, содержащих молибден. Автор статьи, вероятно, или плохо знал производство, или же имел в виду не плавку, а другие металлургические операции. Дело в том, что окислы молибдена летучи. Но окислять молибден в процессе плавки очень трудно — в стали содержится много элементов, которые легче и быстрее связывают кислород, нежели молибден. Эта статья, о которой я вам сказал, и на наших заводах повела к недоразумениям, но мы вовремя проверили и установили, что это не так. У нас химики хорошо определяют молибден. Но всё-таки я мастерам всякий раз напоминаю о том, что молибден не окисляется.
У нас тоже хорошие химики, подумал я, вспоминая о том, как мы впервые плавили молибденовую сталь в Горной академии. Но мы своим химикам тогда не поверили, находясь под гипнозом автора статьи, напечатанной в иностранном журнале и широко разрекламированной по всей стране.
Где-то в подсознании у меня, как лампочка, загорелись слова: «Доверять-то доверяй, но и проверяй!»
Вскоре после этого случая Тевосян, который в то время работал уже помощником мастера у электропечи, как-то сказал мне:
— А ты знаешь, я, кажется, поспешил с заключением в оценке крупповского метода производства стали. Чего-то мы главного ещё не уловили в их методе.
Разница в процессе действительно была разительной, в особенности в методах раскисления.
— Вот смотри, мы загружаем ферросилиций в виде крупных кусков и стараемся, чтобы эти куски погрузились в жидкую сталь. А здесь все делается наоборот — ферросилиций размалывается в порошок и разбрасывается на поверхность жидкого шлака — сколько его бесполезно окисляется за счёт кислорода воздуха! Почему они так поступают?
— Давай поговорим с мастером Квятковским — сегодня он в смене.
И мы пошли к Квятковскому.
— Почему вы не кусковой ферросилиций используете при раскислении стали, а измельчаете его? — спросили мы Квятковского.
— Раньше кусковым пользовались, а вот уже много лет как мелкий применяем.
— Но почему? — спросил я.
Мастер взглянул на меня и произнёс:
— Я в высшей школе не учился. Я не инженер. Этот вопрос вам надо задавать не мне, а инженеру. Спросите Шейка — он доктор. Он вам объяснит почему.
Доктор Шенк большей частью работал в ночной смене. Мы знали, что он собирает материалы для новой книги или статьи, а выпущенная им ранее книга по теории металлургических процессов нам была хорошо известна.
Может быть, нам поработать в ночной смене с Шенком и порасспросить его? Эта мысль возникла у нас обоих — у Тевосяна и у меня. И мы решили со следующей недели перейти в ночную смену. Ночью работать спокойнее. В цехах нет начальства и посторонних посетителей. Никто не отвлекает, да и рабочие у печей более разговорчивы.
В первый же день при встрече с Шенком мы задали ему мучавший нас вопрос:
— Почему на заводе используется не кусковой, а порошкообразный ферросилиций?
— Пройдёмте в конторку к мастеру, — предложил Шенк, — мне нужна чёрная доска, для того чтобы писать… Для чего мы вводим в жидкую сталь ферросилиций? — поставил вопрос Шенк и сам же ответил: — Для того чтобы отобрать кислород у железа и связать его в форме окиси кремния. Так? Ну, а теперь посмотрим, что же будет происходить, если мы будем загружать кусковой ферросилиций? Куски ферросилиция, погруженные в жидкую сталь, растворятся в ней, и кремний будет отбирать кислород от окислов железа. Не правда ли?
— А что будет с продуктом реакции — окисью кремния?
— Она в большей своей части останется в жидком металле в виде шлаковых включений. Часть окиси поднимется вверх и перейдёт в шлак, но большая часть останется в стали, а при разливке стали и остывании слитков законсервируется в них, и, таким образом, насытит сталь неметаллическими включениями.
А что произойдёт, если мы тот же ферросилиций, но в форме порошка будем разбрасывать но поверхности жидкого шлака?
Ферросилиций в этом случае будет взаимодействовать с окислами железа, находящимися в шлаке. Освобождённое от кислорода железо будет переходить в металл, а окись кремния останется в шлаке. Уменьшение окислов железа в шлаке нарушит равновесие, и окислы железа начнут диффундировать из металла в шлак. Мы этот процесс раскисления так и назвали — диффузионным. Теория процесса подробно разобрана в моей книге.
— Но там ничего нет о практике работы вашею завода!
— Да, это правильно. Но о практике мы и не делаем публикаций. Она нам досталась дорогой ценой.
Теперь все было понято — вот чем, оказывается, объясняется высокое качество крупповской стали! Как много нам следует ещё изучать, чтобы уметь готовить сталь высокого качества!
Скоро на завод прибыл ещё советский практикант — инженер путиловского завода Зегжда. Он рассказал, что завод начал осваивать производство новой марки стали с высоким содержанием алюминия и заводские работники встретились с большими трудностями.
— А что у вас за затруднения? — спросил Тевосян.
— Сталь должна содержать около одного процента алюминия и 0,2–0,3 процента кремния, а у нас получается все как раз наоборот: алюминий горит, и мы его никак не можем удержать в стали, а кремний неизвестно откуда лезет в сталь, и его содержание доходит до 0,8–0,9 процента. Работы с этой маркой прекратили, а меня вот сюда направили, — поведал нам свои горести Зегжда.
В это время на заводе Крупна очень часто изготовлялись стали с высоким содержанием алюминия, и мы предложили ему вместе с нами проследить за всем технологическим процессом производства, тем более что Тевосяна эти марки также интересовали.
На следующий же день мы все втроём принялись за дело. Записи решили вести порознь, а затем сверять их. Мы подробно заносили в свои тетради каждую операцию, ничего, кажется, не пропуская.
Но вот процесс плавления закончен, взяты последние пробы, мастер дал свисток, печь стала наклоняться — и в ковш направилась струя жидкого металла. Двое рабочих стали вводить под струю чушки алюминия, прикреплённые к длинным железным прутьям. Затем ковш с жидкой сталью подали на канаву для разливки её по изложницам.
Мы все скрупулёзно записали. Такие наблюдения и записи нами проводились несколько дней, пока мы не убедились, что все исследовано и занесено в тетради.
Вскоре Зегжда уехал в Ленинград, а через несколько дней от него пришло письмо, в котором он сообщал, что попытки воспроизвести процесс производства алюминиевой стали у него закончились плачевно. По-прежнему в стали не удаётся удержать алюминий и откуда-то появляется много кремния.
«Может быть, мы всё-таки что-то просмотрели, — писал Зегжда. — Очень прошу вас проверить все записи и сообщить мне результаты», — стояло в конце письма.
Письмо это нас с Тевосяном ошеломило. Что мы могли пропустить? Следили за процессом втроём, все записи сверили. Почему же на заводе Круппа получается, а у нас нет? В чем дело? Придётся все начинать сначала!
Мы встали к печи. Вновь стали наблюдать за каждой операцией, за каждым движением кочерёжки рабочего в печи, за каждой лопатой заброшенной в печь извести и плавикового шпата. Наши тетради были испещрены записями.
И вот знакомый свисток мастера: процесс сталеварения закончен. Все направляются по другую сторону печи, где стоит ковш, готовый принять жидкую сталь.
Но где моя тетрадь с записями? В карманах её нет. Да, я её оставил у конторки мастера. И я вернулся назад, туда, где мы проводили наблюдения за всеми технологическими операциями.
Но что это такое? Один из рабочих печной бригады находился здесь, и когда печь стали наклонять, он поднял заслонку и к выпускному отверстию стал лопатой бросать известь.
— Зачем вы это делаете? — спросил я его.
— Надо шлак удержать в печи, пока сливается сталь, иначе весь алюминий сгорит.
Я буквально остолбенел. Да ведь это же главная операция при производстве этой марки стали! В один миг я был около Тевосяна.
— Скорее пойдём туда, к загрузочному окну.
Он был поражён и взволнован не менее меня. Ну, теперь понятно, почему получается брак па Путиловском заводе! Но мы-то, мы-то! Как могли пропустить этот приём? Ведь втроём смотрели. Обычно при выпуске стали из печи металл вытекает вместе со шлаком, и это можно хорошо видеть. При производстве же стали с высоким содержанием алюминия шлак задерживают в печи. Для этого на заводе Круппа использовался следующий приём.
В самом конце плавки к выпускному отверстию печи забрасывалось несколько лопат извести и шлак на небольшом участке «замораживали», а отверстие для выпуска стали пробивали небольшим. Таким образом, алюминий подавался в струю жидкого металла и не соприкасался со шлаком. Если бы сталь из печи вытекала вместе со шлаком, тогда алюминий взаимодействовал бы с кремнекислотой шлака и окислялся бы, а восстановленный из шлака кремний переходил бы в сталь, окисленный же алюминий — в шлак. Этого приёма на Путиловском заводе не знали, чем и объяснялось, что им не удавалось «удержать» алюминий и вместо него в стали появлялся излишний кремний.
Загадка была разрешена. Мы были очень довольны, что могли подробно ответить на письмо Зегжды, но вместе с тем и раздражены на самих себя. Как же мы просмотрели эту операцию?! Надо ещё раз проверить все наши записи. Как бы и по другим процессам не получилось то же самое.
Так день за днём постигали мы многовековой опыт крупповских методов производства. Материалов для изучения было много, дней не хватало — и мы часто стали оставаться на заводе и на вторую смену.