Петр Зоркий. Архитектура кристаллов

Фрагменты из книги «Архитектура кристаллов» (М.: Наука, 1968).

Кому не приходилось любоваться причудливым переливающимся блеском, тонкой игрой цветов на гранях кристалла! Будь то драгоценный самоцвет или простая снежинка — кристаллы всегда поражают человека удивительной гармонией, строгостью и изяществом очертаний.

В минералогическом музее вы можете увидеть гигантские кристаллы, достигающие человеческого роста, а иной раз и уникальные экземпляры, вес которых измеряется в тоннах. Но подобные музейные уникумы, конечно, встречаются очень редко. И вообще, на первый взгляд может показаться, что кристаллы хотя и приятное, но не частое явление в нашем мире.

Но присмотритесь получше к окружающим вас предметам. Обычные сахар и поваренная соль, лед и песок состоят из множества мелких кристалликов. Границы раздвинутся еще шире, если вы вооружитесь микроскопом. Излом любого металла глянет на вас сверкающими кристаллическими гранями. Окажется, что основная масса горных пород, образующих земную кору, состоит из кристаллов. Даже глина, как показывают точные методы современной науки, представляет собой нагромождение мельчайших кристалликов. Металлы, камень, песок, глина — это основа наших строительных материалов. Значит, из кристаллов построены целые города!

Вывод, который мы должны здесь сделать, многим покажется неожиданным, но это так: кристаллическое состояние — одно из самых распространенных в окружающей нас природе.

Добавим к этому, что кристаллическими являются очень многие синтетические материалы, используемые в современной технике. Вспомним о полупроводниках, ферромагнетиках, сверхпрочных и жаростойких сплавах, и нам станет ясно, что изучение кристаллического состояния — дело первостепенной научной важности.

Но что такое кристалл? Каковы основные признаки кристаллического состояния?

Твердое вещество существует в двух формах: оно может быть кристаллическим или аморфным. Одно из характерных свойств кристаллического вещества, в отличие от аморфного, — способность самоограняться. Кристаллы образуются по-разному: они выпадают при упаривании раствора, они возникают при охлаждении расплава, при достаточно низкой температуре они растут из паров (вспомните иней или морозные узоры на стекле). И во всех этих случаях на поверхности кристаллов самопроизвольно возникают плоские грани.

Вместе с тем, огранка хотя и характерный, но не обязательный признак кристаллического вещества. В некоторых случаях грани кристаллов бывают выражены весьма нечетко. Иногда вещество состоит из таких мелких кристалликов, что грани трудно обнаружить даже под микроскопом. Кроме того, если кристалл обточить, придав ему округлую форму, лишенную граней, вещество не перестанет быть кристаллическим и свойства его останутся прежними.

Способность самоограняться — это лишь одно из проявлений более общего, более фундаментального качества кристаллов — их анизотропии. Так называют различие свойств по разным направлениям.

Возьмем кристалл поваренной соли, имеющий форму куба, и выточим из него шар. Затем погрузим шар в насыщенный раствор соли и будем медленно упаривать раствор. Кристалл начнет расти и постепенно снова примет форму куба. Этот опыт показывает, что скорость роста кристалла в разных направлениях неодинакова. Грани кристалла возникают перпендикулярно направлениям, по которым скорость роста минимальна.

Анизотропия проявляется в очень многих физических свойствах кристаллов. В отличие от кристаллических аморфные вещества, имеющие совершенно одинаковые свойства по всем направлениям, называют изотропными. В этом отношении они подобны жидкостям и газам. Еще одна характерная особенность кристаллов — фиксированная температура плавления. При нагревании кристаллическое вещество вплоть до определенной температуры остается твердым, а затем начинает плавиться, переходя в жидкое состояние (многие вещества начинают разлагаться гораздо раньше, чем переходят в жидкое состояние; в жидком виде они попросту не существуют). Пока продолжается плавление, температура не повышается. Аморфные вещества ведут себя иначе. При нагревании куска стекла он начинает постепенно размягчаться и, наконец, растекается, принимая форму сосуда. Невозможно установить, при какой температуре это произошло. Вязкость стекла уменьшается постепенно, никакой остановки в росте температуры нет.

Но самая важная особенность кристаллического вещества заключается в упорядоченном расположении его атомов.

На рисунке показано внутреннее строение кристалла и аморфного вещества того же состава. Рисунок, разумеется, имеет условный характер, так как в действительности атомы вещества располагаются не на плоскости, а в пространстве.

Расположение атомов в кристаллическом (а) и аморфном (б) веществе одинакового состава

Рассмотрим атомы, обозначенные черными точками. В обоих случаях окружение каждого из таких атомов почти одинаково: ближайшие соседи располагаются по вершинам треугольника, совершенно правильного при кристаллическом и почти правильного при аморфном состоянии. Значит, и в аморфном веществе имеется так называемый «ближний» порядок. Но если принять во внимание не только самых близких соседей, то выяснится, что в кристалле окружение каждого атома все-таки остается одинаковым, а в аморфном веществе оно окажется разным. Поэтому говорят, что в кристаллическом теле в отличие от аморфного наблюдается «дальний» порядок.

Все особые свойства кристалла вытекают отсюда как следствия. Естественно, что в направлении АВ, параллельном направлению некоторых связей между атомами, свойства будут не такими, как в направлении CD, вдоль которого такие связи не проходят. В аморфном веществе таких специфических направлений мы не найдем. Так объясняется анизотропия кристаллов, в частности различная скорость роста в разных направлениях, а следовательно, и способность самоограняться.

В рассмотренном примере мы подразумевали, что одно и то же вещество может существовать и в аморфном, и в кристаллическом состоянии. Это действительно так. При быстром охлаждении расплавленного сахара получается аморфная масса (леденец), при медленном охлаждении в образующемся твердом сахаре можно заметить поблескивающие кристаллики.

Нетрудно понять, почему так происходит. Представьте себе роту солдат, которым приказано строиться. Если им дать для этого хотя бы немного времени, они успеют занять свои места, выровнять ряды. Если же после команды строиться будет сразу подана команда «стой!», расположение солдат так и останется беспорядочным, хотя, может быть, и наметится какая-то тенденция к порядку. Нечто подобное происходит и при затвердевании: если процесс идет медленно, частицы успевают занять отведенные им места, быстрое затвердевание не дает им такой возможности.

Но даже в твердом аморфном веществе, хотя и очень медленно, атомы перемещаются и постепенно упорядочивают свое расположение. Леденец, пролежав несколько месяцев, начинает кристаллизоваться — «засахариваться». Старинное стекло иногда мутнеет — в нем образуется множество мельчайших кристалликов и возникающая неоднородность материала приводит к потере прозрачности.

Аморфное вещество самопроизвольно переходит в кристаллическое, а вот противоположный процесс никогда не наблюдается. Отсюда следует очень важный вывод. Кристаллическое состояние — это равновесное, наиболее устойчивое состояние твердого вещества.

* * *

Кристаллы привлекали внимание ученых еще в Средние века. В конце XVIII века наука о кристаллах превратилась в самостоятельную дисциплину — кристаллографию. Но еще очень долго ученые были вынуждены ограничиваться изучением внешней формы кристаллов. Недра кристалла оставались недоступными — здесь приходилось довольствоваться догадками.

Мысль о том, что многие свойства кристаллов можно объяснить правильным, закономерным расположением частиц, возникала еще у Исаака Ньютона. В 1675 году он писал: «Нельзя ли предположить, что при образовании кристалла частицы не только установились в строй и в ряды, застывая в правильных фигурах, но также посредством некоторой полярной способности повернули свои одинаковые стороны в одинаковом направлении?» Впоследствии эта идея претерпела значительную эволюцию в работах М. В. Ломоносова и французских ученых Р. Гаюи и О. Бравэ; у последнего она достигла математической законченности.

Только в XX веке после открытия дифракции рентгеновских лучей ученые получили возможность изучать расположение атомов в кристаллическом веществе. И тогда оказалось, что, несмотря на многообразие внешней формы кристаллов, их внутреннее строение еще многообразней, еще богаче вариациями. Перед учеными открылся удивительный мир кристаллических структур с его сложными, подчас трудно объяснимыми закономерностями. Обнаружилось, что строение кристаллического вещества находится в тесной связи с его химической природой. От кристаллографии отпочковалась кристаллохимия.

Теперь мы знаем пространственное расположение атомов в кристаллах многих тысяч химических соединений. Иногда очень простое, иногда чрезвычайно замысловатое, оно естественно вызывает сравнение с архитектурой. Внутри кристалла, как и внутри большого здания, можно иной раз найти обширные «залы», извилистые «переходы», «этажи» и закрученные по спирали «лестницы». И весь этот интерьер находится в строгом соответствии с экстерьером — внешней огранкой кристалла.

Проводя такую аналогию, нельзя, однако, не отметить весьма важного отличия. Здание строится руками человека. Оно устремляется ввысь вопреки земному притяжению, вопреки стремлению к равновесию, и его устойчивость относительна. Оставленное человеком, лишенное ухода, оно постепенно превращается в руины, а затем и всякий след его стирается с лица земли.

Кристалл строит себя сам. Его архитектура, какой бы затейливой она ни была, возникает не вопреки, а вследствие стремления к равновесию. Образуя правильную гармоническую постройку, атомы тем самым занимают наиболее устойчивое для данных условий положение. И пока эти условия не изменятся, кристаллу не грозит разрушение.

Из главы «Путь, найденный физиками» История великого открытия

В 1895 году Конрад Рентген открыл удивительные лучи, свободно проникавшие через бумагу, через ткань, даже через металлическую пластинку. Но еще 17 лет после этого природа таинственных лучей оставалась неясной. Решение было найдено в 1912 году, когда немецкий физик Макс фон Лауэ высказал предположение, что длина волны рентгеновских лучей может оказаться настолько малой, что их дифракция будет наблюдаться на кристаллической решетке. История постановки эксперимента, подтвердившего догадку Лауэ, довольно любопытна. Изложим ее со слов советского академика А. Ф. Иоффе[78].

В те времена в кафе «Хофгартен» в Мюнхене образовалось нечто вроде клуба физиков с участием химиков и кристаллографов, где ежедневно обсуждались актуальные научные вопросы. В этих дискуссиях принимал участие А. Ф. Иоффе, работавший тогда в Германии. Именно здесь фон Лауэ рассказал о своей гипотезе. Но присутствовавший при этом физик Вагнер категорически не согласился с Лауэ. Как может наблюдаться дифракция от пространственной решетки? Ведь дифракционные картины, соответствующие трем измерениям, будут перекрываться, мешая друг другу! — говорил Вагнер. Лауэ настаивал на своем, и свидетели спора предложили заключить пари на коробку шоколада. Фридрих, производивший тогда под руководством Рентгена опыты с загадочными лучами, взялся решить спор путем экспериментальной проверки. Придя в лабораторию, он поставил на пути рентгеновских лучей кристалл, а рядом — фотографическую пластинку, которая могла бы зафиксировать лучи под прямым углом к первичному пучку. Велико было разочарование, когда никаких следов дифракционных лучей на пластинке не обнаружилось! Опыт повторялся многократно, но каждый раз без успеха…

В одной комнате с Фридрихом работал молодой физик Книппинг, которому мешала беспрерывно работавшая рентгеновская трубка. Потеряв терпение, он поставил фотопластинку за кристалл на пути первичного пучка для того, чтобы хоть что-нибудь на ней увидеть. И вот великое открытие совершилось! На проявленной пластинке были видны симметрично расположенные пятна, красноречиво подтверждавшие правильность догадки Лауэ. А вскоре появилась знаменитая работа Лауэ, Фридриха и Книппинга, где сообщалось об открытии дифракции рентгеновских лучей на кристаллах и объяснялась сущность этого явления. Вагнер проиграл коробку шоколада, хотя его скептицизм ускорил постановку опыта.

При таких курьезных обстоятельствах было совершено выдающееся открытие, которое не только позволило однозначно выяснить природу рентгеновского излучения, но и открыло путь ученым в недра кристалла. Возникший на базе явления дифракции новый метод — рентгеноструктурный анализ кристаллов — сделался самым мощным, самым надежным средством исследования строения вещества.

В 1932 году в студенческом химическом обществе Оксфорда читал лекцию профессор Дж. Бернал — крупный ученый, внесший немалый вклад в изучение строения твердого и жидкого вещества. Ныне он широко известен также как активный деятель движения борцов за мир. После лекции к нему обратилась молодая женщина. Она просила разрешить ей работать в лаборатории Бернала над проблемами кристаллохимии природных соединений. Это была Дороти Кроуфут, теперь Дороти Хотчкин, исследования которой впоследствии стали своего рода рекордами структурного анализа.

В годы Второй мировой войны, проявив удивительное упорство и проницательность, Хотчкин одержала свою первую победу. Она определила строение сложнейшей молекулы пенициллина раньше, чем это удалось сделать химическими методами. А затем — новый блестящий успех: ученая безукоризненно точно нашла расположение 97 атомов молекулы витамина В12 и молекул воды, которые входят в состав этих кристаллов. Ее работы дали основание надеяться, что с помощью рентгеноструктурного анализа будет, наконец, решена важнейшая проблема строения белка.

В 1914 году Лауэ был удостоен Нобелевской премии — высокой награды, которая присуждается лишь лучшим из лучших. А ровно полвека спустя значение его открытия было признано вторично. Нобелевская премия по химии за 1964 год была присуждена Дороти Хотчкин, которая после Марии Кюри-Складовской и Ирен Кюри стала третьей женщиной, удостоенной звания Нобелевского лауреата.

За свою полувековую историю рентгеновский анализ прошел путь от исследования простейших структур до изучения сложнейших природных соединений. Разумеется, при этом совершенствовался и усложнялся и сам метод. Современный курс рентгеноструктурного анализа — это пара увесистых томов, испещренных математическими формулами. Его освоение требует глубоких знаний в области физики, химии, математики и кристаллографии одновременно. Но тем не менее число исследователей, применяющих этот метод, — так называемых структурщиков, увеличивается с каждым годом. Теперь вряд ли найдется такой класс химических соединений, где структурщики не сказали бы своего авторитетного слова.

И почти все это время патриархом структурщиков был Почетный президент Международного кристаллографического союза профессор Макс фон Лауэ. В годы фашистской диктатуры Лауэ активно помогал жертвам фашизма и боролся с его сторонниками. Он трагически погиб в 1960 году, не дожив лишь двух лет до полувекового юбилея своего открытия. Жизнь замечательного ученого оборвалась в результате автомобильной катастрофы. Всего лишь за полгода до этого в связи с 80-летием Лауэ получил адрес, где говорилось:

«Международный кристаллографический союз мужу славному, мудрейшему Максу Лауэ, физику восьмидесятилетнему, который, будучи по разуму и глубине мысли равен Лукрецию, Галилею, Ньютону, познал тончайшую природу вещества и открыл для исследования огромный новый мир, от имени всего кристаллографического племени приносит поздравления и шлет наилучшие пожелания».

В гостях у структурщиков

А теперь, читатель, приглашаем вас совершить экскурсию в кристаллохимическую рентгеновскую лабораторию.

Попав во владения структурщиков, в первый момент вы, вероятно, будете удивлены. Хотя лаборатория размещается в солидном химическом институте, здесь не окажется ни огромных колб и реторт, ни бесконечных рядов пробирок и всего прочего, что со времен Ломоносова принято считать непременными атрибутами химии. Вы увидите только столы, загроможденные грудами чертежей и листов с расчетами. Вам бросятся в глаза рулоны бумаги, испещренные цифрами, и пачки перфокарт. С перфокарт считывает информацию электронная вычислительная машина. А рулон с цифрами — это ответ, который дает машина, решив задачу. В длинных столбцах цифр заключены сведения о распределении электронной плотности внутри кристалла.

И среди всего этого бумажного царства вы увидите склонившихся над столами людей. Одни считают на логарифмических линейках или арифмометрах, другие рассматривают рентгенограммы на специальных освещаемых снизу столиках-негатоскопах, третьи — вычерчивают уже знакомые вам проекции и сечения электронной плотности. Знакомьтесь, это структурщики!

В соседней комнате находятся пульты управления рентгеновских аппаратов с предостерегающими красными сигнальными лампами. Аппараты работают! Сами аппараты располагаются за стеной со свинцовой защитой. Прежде чем пойти в аппаратную, нужно выключить с пульта рентгеновские трубки — ведь при длительном или систематическом воздействии рентгеновские лучи опасны для человека.

В аппаратной над квадратными металлическими столами возвышаются рентгеновские трубки. Со всех сторон их окружают камеры, которые «с жадностью пьют» испускаемые трубкой рентгеновские лучи. Камеры очень разнообразны по виду. Вот маленькие РКД (рентгеновские камеры Дебая), где снимаются порошкограммы. РКОП (рентгеновские камеры определения параметров) — те покрупнее. Как показывает само их название, эти камеры служат для определения размеров элементарной ячейки; в них же снимают лауэграммы. Но основное место принадлежит КФОР — камерам фотографирования обратной решетки — и камерам Вейссенберга. Это сложные и очень точные механизмы, где осуществляется строго согласованное движение и монокристалла и пленки. Именно на этих камерах получают рентгенограммы для определения сложной архитектуры кристаллов.

Да, кстати, а где же кристаллы? Сразу их и не разглядишь. Дело в том, что для рентгеноструктурного анализа используются очень маленькие кристаллики размером в десятые доли миллиметра. Иногда они обтачиваются в форме шаров или цилиндров. В самом сердце камеры на специальной подставке вы увидите, присмотревшись, миниатюрный кристаллик.

Весьма чувствительная пленка, на которой снимаются рентгенограммы, завернута в черную бумагу, непроницаемую для видимого света, а рентгеновские лучи проникают через нее беспрепятственно. Когда съемка закончится, пленку проявят и получится рентгенограмма.

Мы покидаем кристаллохимическую лабораторию, и, может быть, полученные впечатления наведут читателя на некоторые размышления. Мы недаром обратили внимание на то, что большая часть работы структурщика выполняется не за лабораторным, а за письменным столом. Структурщик входит в аппаратную лишь для того, чтобы установить камеры или забрать готовую рентгенограмму.

Довольно много времени занимает оценка интенсивности лучей, т. е. степени почернения пятен на снимке. Но можно надеяться, что этот процесс скоро будет автоматизирован: ведется большая работа по созданию соответствующих приборов — автоматических дифрактометров. С их помощью интенсивность будет оцениваться и точнее, и быстрее.

На что же уходит основная часть рабочего времени структурщика? Что является главным в его работе? Главное — это анализ полученных данных, обработка результатов, которые выдает машина, напряженные поиски единственно правильного варианта структуры.

На этом примере читатель, может быть, почувствует условность границы, разделяющей понятия «теории» и «эксперимента». Всякая теория, какой бы она ни была абстрактной, отталкивается от какого-то эксперимента. Между опытом, который позволяет получить дифракционную картину кристалла, и конечным результатом, т. е. моделью кристаллической структуры, лежит длинный путь расчетов и умозаключений, основанных на отнюдь не тривиальной теории структурного анализа. И поэтому трудно совершенно определенно ответить на вопрос: является ли сложная кристаллическая структура, найденная описанным путем, плодом хорошо разработанной теории или экспериментально установленным фактом.