Смутная картинка
Физикам казалось, что их трудности чисто математические: все эти бесконечности, расхождения, формальный подход. Но было еще одно скрытое препятствие, которое редко всплывало в опубликованных работах и устных обсуждениях, — невозможность визуализации. Разве возможно представить атом или электрон в момент излучения им света? Каким должен быть мысленный образ, способный помочь ученому, направив его размышления по верному пути? Первые квантовые парадоксы заставили физиков усомниться в своей способности к интуитивному пониманию, в своей интуиции вообще, и к началу 1940-х годов они почти перестали говорить о визуализации. Казалось, эта проблема больше из области психологии, чем физики.
Визуализация атома по Нильсу Бору — атом, представленный в виде миниатюрной Солнечной системы, — была отвергнута как не соответствующая истине. В 1923 году, на десятую годовщину разработки этой концепции, немецкий квантовый физик Макс Борн восхвалял ее: «Идея о том, что законы микрокосма отражают происходящее в большом мире, видится человеческому уму истинным волшебством». Но уже тогда Борн и его коллеги понимали, что модель Бора — анахронизм. Она выстояла, когда открыли угловой момент и спин, ее включили в стандартную программу по физике и химии для старших классов, но картинка электронов, вращающихся вокруг ядра, больше не соответствовала действительности. На смену ей пришли волны с резонансными модами[126], вероятностно рассеянные частицы, операторы и матрицы, изменчивые пространства с дополнительными измерениями. Настал момент, когда физики решили полностью отказаться от идеи визуализации. Тон задал сам Бор. На вручении Нобелевской премии за свою модель атома он сказал, что пора отказаться от надежды описать атомную модель путем проведения аналогий с повседневными понятиями. «Мы должны умерить наши требования и довольствоваться формальными концепциями — формальными в том смысле, что они не снабжены визуальной информацией, привычной картинкой…» Такая смена позиции породила немало трений. «Чем больше я размышляю над физической стороной теории Шрёдингера, тем более отталкивающей ее нахожу, — заметил Гейзенберг в 1926 году в разговоре с Паули. — Попробуйте представить вращающийся электрон, чей заряд распространяется в пространстве по осям в четырех-пяти измерениях. То, что Шрёдингер пишет о возможности визуализировать его теорию… я считаю бредом». Как бы высоко ни ценился среди физиков навык концептуализации, который они называли интуицией, сколько бы ни говорилось о разнице физического и формального понимания, вывод напрашивался сам собой: не стоит доверять изображениям субатомной реальности, списанным с земного, повседневного опыта. Бейсбольные мячи, артиллерийские снаряды, планетоиды — квантовые физики-теоретики отвергли все эти модели, отказались от визуализации в виде колесиков и волнистых линий. Отец Фейнмана как-то спросил его (впоследствии Ричард много раз пересказывал эту историю): «Когда атом переходит из одного состояния в другое, он излучает частицу света, называемую фотоном. Это понятно. Фотон в атоме опережает время? Если да, то откуда он берется? Как излучается?» Ни у кого не было картинки, иллюстрирующей это явление — излучение света, взаимодействие материи и электромагнитного поля. А ведь оно было определяющим для квантовой электродинамики.
Вместо картинки возникла бездна — бурлящая, живая, полная вероятностей; неспокойный вакуум новой физики. Некоторые физики, не в силах подобрать даже приблизительный визуальный аналог происходящего в квантовом мире, обратились к новому виду философствования — парадоксальным мысленным экспериментам и спорам о реальности, сознании, причинности и измерении. К концу 1920-х годов эти споры стали неотъемлемым атрибутом интеллектуальной среды; они были провокационными и неразрешимыми и следовали за физикой, как облако пыли за автоколонной. Опубликованная в 1935 году работа Эйнштейна, Подольского и Розена — та самая, благодаря которой у семнадцатилетнего Швингера появился шанс произвести впечатление на Раби, — стала тому ярчайшим свидетельством. В ней приводились примеры двух квантовых систем — возможно, атомов, — связанных в прошлом взаимодействием частиц, но в данный момент разделенных большим расстоянием. Авторы показывали, что простое измерение одного атома из пары повлияет на результаты измерения второго, причем эффект будет мгновенным — быстрее света, то есть, по сути, ретроактивным. Эйнштейн считал, что это компрометирует законы квантовой механики. Бор и более молодые теоретики были настроены более оптимистично, отмечая, что Эйнштейн уже отнес представления о прошлом и о расстоянии в категорию понятий, о которых нельзя говорить с полной определенностью, в классическом духе. В том же ключе была выдержана теория о знаменитом коте Шрёдингера: бедное гипотетическое животное сидело в ящике с детектором, присоединенным к пузырьку с ядовитым газом, и его судьба, таким образом, зависела все от того же квантово-механического явления — излучения фотона атомом. Шрёдингер утверждал, что, несмотря на бойкие вероятностные расчеты ученых — в пятидесяти процентах случаев «да», в пятидесяти «нет», — они по-прежнему не могли визуализировать кота иначе как живым или мертвым.
Со временем физики неохотно примирились с тем, что неспособны выстроить однозначную ментальную модель событий, происходящих в микромире. Используя слова «волна» или «частица» — а использовать оба этих слова приходилось, — они сопровождали их молчаливыми кавычками, словно подразумевая: на самом деле это никакая не волна и не частица. В результате все признали, что отношение ученых-физиков к действительности изменилось. Больше невозможно было предполагать, что существует единственная реальность и что ум человека способен рационально и четко ее осмыслить, а ученый — объяснить. Стало ясно: продукт работы исследователя — теория или модель — рассматривает и интерпретирует опыт способом, который никогда не дает окончательного ответа. Ученые полагались на модели, как человек, пытающийся сориентироваться в темной комнате, опирается на почерпнутый из памяти визуальный образ. Физики начали открыто говорить о том, что создают некий язык — как будто они были не исследователями, а литературными критиками. «Не стоит считать, что задача физики — выявить законы природы, — говорил Бор. — Физика касается лишь того, что можно сказать о природе». И это всегда было так, но на сей раз природа утерла ученым нос.
Однако в конечном счете почти никому из физиков не удалось полностью отказаться от визуализации. Образы были им необходимы. Прагматичные теоретики ценили образ мышления, основанный на видении и чувствовании. Они называли его физической интуицией. Фейнман сказал Дайсону (и тот с ним согласился), что именно благодаря физической интуиции появились великие работы Эйнштейна. Период величия для Эйнштейна закончился, когда тот «перестал мыслить конкретными физическими образами и начал манипулировать уравнениями». Интуиция задействовала не только визуальный, но и слуховой, и кинестетический каналы. Те, кто видел Фейнмана в минуты предельной концентрации, рассказывали о сильном, даже тревожном воздействии этого процесса как физического: создавалось впечатление, что его мозг не ограничивался серым веществом, а заставлял работать все мышцы тела. Сосед Фейнмана по Корнеллскому общежитию как-то открыл дверь и увидел, что Ричард катается по полу рядом с кроватью: так он решал задачу. А когда не катался, то как минимум ритмично бормотал себе под нос или отбивал барабанную дробь кончиками пальцев. В ходе научной визуализации человек часто помещает себя внутрь природной среды: в воображаемый луч света, в релятивистский электрон. Как писал историк науки Джеральд Холтон, это процесс, в котором «карта ума… и законы природы накладываются друг на друга». Для Фейнмана элементы в природе взаимодействовали в ощутимом, меняющемся, порхающем ритме.
Он и сам об этом задумывался; как-то раз даже выписал фрагмент стихотворения Набокова (хотя литература и поэзия совсем его не интересовали): «Пространство — мельтешение в глазах; а время — пение в ушах».
— Вот вы все время твердите о визуализации, — заметил он в разговоре с историком Сильваном Швебером, который брал у него интервью. — Я пытаюсь привнести ясность, но рождается лишь смутная картинка, которая с трудом поддается осмыслению и визуализируется лишь наполовину. Мне представляются дрожащие траектории и извилистые линии. Даже сейчас, рассуждая о функционале влияния[127], я вижу слияние и собираю образы, словно вещи в мешок, а затем пытаюсь их развить. Я могу их представить, но не могу описать.
— Можно ли сказать, что вы видите решение? — спросил Швебер.
— Скорее лишь его очертания. Пожалуй, такой метод визуализации является интуитивным. Как правило, я пытаюсь представить картинку настолько четкой, насколько это возможно, но иногда могу пойти математическим путем, так как он оказывается более эффективным. Однако при решении некоторых задач я сталкиваюсь с необходимостью задействовать воображение; тогда я обращаюсь к этому методу, прежде чем перейти к математическим расчетам.
Главной сложностью стала визуализация понятия «поле». Однажды Фейнман сказал студентам: «У меня нет подходящего образа для электромагнитного поля, с помощью которого вы могли бы представить суть этого понятия». Пытаясь проанализировать собственный способ визуализировать то, что не поддается воображению, он выяснил нечто странное. Математические символы, которые он использовал каждый день, переплелись с его физическими ощущениями движения, давления, ускорения. Фейнман наделял абстрактные символы физическим смыслом даже тогда, когда он пытался управлять своей необузданной физической интуицией и оперировать этими символами, применяя свои знания.
«Описывая магнитное поле, движущееся в пространстве, я говорю о E- и B-полях и размахиваю руками, поэтому вам может показаться, что я действительно их вижу. Но на самом деле я вижу некие смутные, темные, дрожащие линии, кое-где снабженные стрелочками, исчезающими, если приглядеться внимательнее… Тогда я начинаю путать символы, которые использую для описания объектов, и сами объекты».
И все же Фейнман не мог ограничиться одним лишь математическим методом. В математике поле представляло собой совокупность чисел, каждое из которых было связано с определенной точкой в пространстве. «Это невозможно вообразить», — признался он студентам.
Визуализация необязательно подразумевала построение диаграмм. Как сложное, интуитивное, кинестетическое понимание физики не всегда можно было передать с помощью фигур, составленных из палочек, так и диаграмма не всегда отражала физическую реальность. Визуализация могла иметь форму таблицы или картинки-подсказки. К тому же в квантовой физике диаграммы использовали редко. Правда, был один типичный пример — «лесенка» из горизонтальных линий, изображающая энергетические уровни атома:
Квантовый скачок, визуализированный в виде лесенки
Квантовый скачок (переход) вниз с одного энергетического уровня на другой сопровождается излучением фотона; поглощение фотона приводит к скачку на верхний уровень (согласно постулатам Бора). На подобных диаграммах фотоны не отображались вовсе, как и на других, еще более неудачных схемах того же процесса[128].
Фейнман никогда не использовал такие диаграммы, но часто заполнял страницы своих тетрадей рисунками, напоминающими о пространственно-временных траекториях, которые были столь важной частью его принстонской работы с Уилером. Путь электрона на его рисунках изображался прямой линией, которая шла через всю страницу, символизируя движение в пространстве (горизонталь) и во времени (вертикаль). Поначалу Фейнман, как и другие, не отображал излучение фотона; это явление передавалось на картинке как отклонение электрона от намеченной траектории. Такой подход отражал выбранный ученым способ визуализации процесса: Фейнман по-прежнему воспринимал взаимодействие электронов с электромагнитным полем как взаимодействие именно с полем, а не со скоплением частиц — фотонов.
В середине 1947 года после длительных уговоров и даже угроз друзья Фейнмана убедили его опубликовать идеи, о которых он беспрестанно им твердил. Когда публикация наконец увидела свет, диаграмм в ней не было. Новый труд, в основу которого легла частично переработанная дипломная работа, свидетельствовал о том, что фейнмановское понимание проблем квантовой электродинамики стало более зрелым и глубоким. Он объяснял постулаты своей новой теории с беззастенчивой простотой. Для многих физиков эти идеи стали самыми влиятельными из всех, когда-либо опубликованных Фейнманом.
Он утверждал, что разработал альтернативную формулировку квантовой механики в дополнение к тем, что двадцатью годами ранее представили Шрёдингер и Гейзенберг. Он определил понятие амплитуды вероятности для пространственно-временной траектории. В классической механике физики просто складывали вероятности. Например, в бейсболе процент шансов перехода беттера на первую базу считается так: тридцать процентов вероятности попадания по мячу плюс десять процентов вероятности перемещения на базу за болы (четыре неточные подачи питчера подряд) плюс пятипроцентная возможность ошибки. В мире квантовой механики вероятности выражались в виде комплексных чисел[129], чисел с модулем и фазой, и рассчитывались из квадрата амплитуд. Эта математическая процедура была необходима, чтобы выявить свойство частиц вести себя как волны. Волнам свойственна интерференция. Они могут усиливать или гасить друг друга в зависимости от того, как накладываются их фазы. Свет, соединяясь со светом, может порождать тьму, чередующуюся с яркими полосами, — подобно глубоким бороздам и высоким гребням, образуемым волнами на поверхности озера.
Фейнман описал то, с чем его читатели уже были знакомы, — канонический эксперимент квантовой механики, так называемый эксперимент с двумя щелями, который для Нильса Бора стал иллюстрацией неизбежного парадокса корпускулярно-волнового дуализма. К примеру, поток электронов проходит сквозь две прорези в экране. С противоположной стороны их поступление фиксирует детектор. Достаточно чувствительный прибор способен фиксировать перемещения электронов в виде полета множества пуль; он может быть настроен так, чтобы производить щелчки, подобно счетчику Гейгера. Однако возникающая картина демонстрирует другое пространственное явление: вероятность найти электрон в той или иной точке детектора определяется дифракционной картиной, а точнее — результатом интерференции «электронных» волн, прошедших через щели. Так что же такое электрон — частица или волна? Решением этого парадокса в квантовой механике стал неизбежный вывод: каждый электрон каким-то образом «видит» обе прорези и проходит через них одновременно. В классическом же представлении частица должна проходить только через одну из двух щелей. Однако в процессе эксперимента, когда прорези поочередно закрывали, пропуская поток электронов сначала через щель А, а затем через щель В, интерференции не происходило. Делались попытки «поймать» частицу в момент ее прохождения через одну из щелей, разместив детектор рядом с прорезью, но, казалось, само присутствие детектора разрушало возникавший ранее рисунок.
До сих пор амплитуда вероятности отражала возможность прибытия частицы в определенное место в определенное время. У Фейнмана она стала соответствовать «всему циклу движения частицы», то есть ее пути целиком. Он сформулировал центральный принцип своей квантовой механики: «Вероятность процесса, который может происходить несколькими различными способами, пропорциональна квадрату суммы комплексных вкладов всех альтернативных путей». Эти комплексные числа, эти амплитуды, прежде записывались в терминах классического действия; Фейнман показал, как рассчитать действие для каждой траектории в виде определенного интеграла. И доказал, что этот необычный подход является математическим эквивалентом стандартной волновой функции Шрёдингера, хоть и сильно отличается от нее по духу.
Главная загадка квантовой механики — та, к которой в итоге сводятся все остальные.
Подчиняясь классическим законам механики, оружие, производя выстрел, выпускает пули. Но на пути к цели они сначала должны пройти сквозь экран с двумя щелями. Траектория их движения показывает, что вероятность попадания в цель зависит от места их прохождения. Наиболее вероятно попадание в цель позади одной из прорезей. Вероятность этого равна сумме вероятностей для каждой щели: если бы половину пуль выпустили с открытой левой щелью, а половину — с открытой правой, результат был бы одинаковым.
Но когда мы имеем дело с волнами, результат существенно отличается. Если открывать щели по очереди, путь волн будет похож на траекторию пуль: мы увидим два отчетливых пика. Но если обе щели открыты, волны проходят через них одновременно, и происходит интерференция; при совпадении фаз волны усиливают друг друга, при несовпадении — гасят.
Итак, мы подошли к квантовому парадоксу. Подобно пулям, частицы «выстреливают» в цель каждая по отдельности, но при этом они, как и волны, подвержены интерференции. Если каждая частица проходит через щель по своему индивидуальному пути, что вызывает интерференцию? Хотя электрон и достигает цели в определенной точке в пространстве и времени, оказывается, что каким-то образом он проходит через обе щели, или, если хотите, «ощущает присутствие» в обеих щелях одновременно.
Фейнман не печатался в Physical Review уже более десяти лет — с тех пор, как опубликовал свою дипломную работу. К его огорчению, редакция отказалась печатать этот новый труд. Бете помог ему кое-что переписать, показал, как разделить для читателя старое и новое, после чего Фейнман отправил работу в журнал «Обзоры современной физики» (Reviews of Modern Physics), специализирующийся на ретроспективных исследованиях. Она вышла весной под заголовком «Пространственно-временной подход в нерелятивистской квантовой механике» (Space-Time Approach to Non-Relativistic Quantum Mechanics). Фейнман открыто признавал, что его формулировка квантовой механики не представляет собой ничего нового с точки зрения результатов, но при этом объяснял, в чем состоит достоинство его труда: «Есть ни с чем не сравнимое удовольствие в том, чтобы рассматривать давно известное с новой точки зрения. Кроме того, существуют задачи, решать которые новым способом гораздо удобнее». (Например, при расчете взаимодействия частиц можно избежать трудоемких расчетов с использованием двух различных систем координат.) Читатели — поначалу их были единицы — не обнаружили в его работе замысловатой математики, увидев в ней всего лишь попытку немного иначе взглянуть на известную проблему: ее основа была взята из чистой классической механики и пропущена через призму физической интуиции.
Но были и те, кто сразу распознал потенциал фейнмановских идей, например польский математик Марк Кац. Он слышал лекции Фейнмана об интегралах по траекториям в Корнелле и сразу же заметил сходство его рассуждений с теорией вероятности. Кац в то время пытался развить исследования Норберта Винера по броуновскому движению — хаотичному, беспорядочному движению атомов в процессе диффузии, которое так занимало Фейнмана в ходе его теоретических изысканий в Лос-Аламосе. Винер тоже создал интегралы, суммирующие множество вероятных путей частицы, но в его теории было одно существенное отличие — то, как он рассматривал время. Через несколько дней после выступления Фейнмана Кац разработал новую формулу, получившую название формулы Фейнмана — Каца. Впоследствии она станет одним из самых часто используемых математических инструментов, установивших связь между применением теории вероятности и квантовой механикой. А польский математик будет считать, что его знают прежде всего как «Каца из формулы Фейнмана — Каца»: это открытие затмит все остальные в его карьере.
Фейнмановские интегралы по траекториям — эти суммы траекторий — казались странными даже физикам, привыкшим к теориям со сложным философским смыслом. Они создавали вселенную, где учитывались все потенциальные возможности, где ничего не оставалось скрытым и признавалась каждая вероятность. Фейнман объяснил свою концепцию Дайсону:
«Электрон делает все, что ему вздумается, движется в любом направлении с любой скоростью, вперед или назад во времени — как ему захочется. А потом ты просто складываешь амплитуды и получаешь волновую функцию».
Дайсон с улыбкой ответил, что Фейнман сошел с ума. Но Фейнман интуитивно уловил самую суть эксперимента с двумя щелями, в котором электрон «осознавал» все вероятности.
Попытка Фейнмана познать природу с помощью интеграла по траекториям, его понятие «суммы историй» представляли собой переосмысление принципов наименьшего действия и наименьшего времени. Фейнману казалось, что он открыл глубинные законы, благодаря которым много веков назад возникли принципы механики и оптики, открытые Христианом Гюйгенсом, Пьером де Ферма и Жозефом Луи Лагранжем. Откуда брошенный мяч знает, что должен описать именно эту дугу, максимально сократив действие? Откуда лучу света известно, что он должен выбрать траекторию, сводящую к минимуму время распространения? В ответ на эти вопросы Фейнман представил теорию, которая служила для осмысления не только новых тайн квантовой механики, но и обманчиво невинных задачек, с которыми сталкивается любой начинающий студент-физик. Проходя через воду, свет преломляется под точным углом. От поверхности зеркала он отскакивает, как бильярдный шар. Кажется, что свет движется по прямой. Этот путь — путь наименьшего времени — особенно примечателен, потому что отражает ситуацию, когда вклады соседних траекторий почти совпадают по фазе и потому усиливают друг друга. Но на краю зеркала — вдали от пути наименьшего времени — траектории обнуляются. При этом свет проходит всеми возможными путями. Фейнман показал это; он доказал, что траектории, которые на первый взгляд кажутся несущественными, всегда присутствуют в общей картине, затаившись где-то на заднем плане; их вклады не проходят незамеченными, они готовы заявить о себе в любой момент такими явлениями, как миражи и дифракционная решетка.
Студентов, изучающих оптику, в то время учили альтернативному объяснению этих явлений, представляя свет волной, подобной тем, что образуются в воздухе и воде. Фейнман категорически отмел эту точку зрения. Волнообразность — внутреннее свойство фазы, которой обладает амплитуда. Когда-то давно, вместе с Уилером, Фейнман мечтал вовсе исключить из рассуждений поле. Это оказалось невозможным. Поле прочно укоренилось в сознании физиков. Без него было не обойтись; более того, число полей постоянно множилось. Появление новых частиц, например мезонов, означало возникновение нового поля — словно дополнительного слоя прозрачного пластика; частица была его квантованным проявлением. И все же теория Фейнмана сохранила признаки своего первоначального скелета, хотя от самого скелета он давно отказался. Ее «действующими лицами» снова были частицы, и на этот раз их роль вырисовывалась более отчетливо. Это привлекло к ней внимание физиков, ищущих опору в визуализации, потерявшихся в мире мыслительных экспериментов, где все больше властвовали облачные следы, номенклатуры и поведение частиц.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК