Слабые взаимодействия

We use cookies. Read the Privacy and Cookie Policy

К концу 1950-х — началу 1960-х годов, когда открытие новых частиц перестало быть чем-то из ряда вон выходящим, физикам стало все сложнее нащупывать грань между возможным и невозможным. В их лексиконе появилось слово «зоопарк»[156], а научная интуиция часто вступала в конфликт с эстетическим чувством. На одном из собраний Вайскопф заявил, что, если в ближайшее время кто-то откроет частицу с двойным зарядом, его это очень расстроит. Оппенгеймер добавил, что лично ему не понравилась бы сильно взаимодействующая частица со спином более 1/2. Обоих вскоре ждало разочарование. Природа не была столь придирчивой.

Многим не нравились методы, всего несколько лет тому назад собранные под общим названием теории поля, — прямой расчет взаимодействия частиц при наличии бесконечностей, по-прежнему остававшихся камнем преткновения для ученых. В других областях физики частиц исследования не были столь успешными, как в квантовой электродинамике. Из четырех фундаментальных взаимодействий — электромагнитного, гравитационного, сильного (формирующего атомное ядро) и слабого (отвечающего за радиоактивный бета-распад и распад странных частиц) — перенормировка оказалась эффективна лишь применительно к первому. Для объяснения электромагнетизма было достаточно простейших диаграмм Фейнмана. Но по мере ослабления силы взаимодействия более сложные схемы оказывались все менее применимы математически (по той же причине в ряде типа 1 + n + n2 + … дальнейшие члены исчезали, если n = 1/100). Для расчетов сильного взаимодействия уже требовался целый лес фейнмановских диаграмм, и это бесконечно усложняло любые вычисления. Получить реальный результат становилось невозможно. Квантовая электродинамика позволяла делать удивительно точные динамические прогнозы; однако там, где действовали более сложные силы, нельзя было применить столь же успешный метод: его попросту не существовало. Симметрии, законы сохранения и квантовые числа складывались в абстрактные принципы, служащие для упорядочения экспериментальных данных. Ученые искали в них логику, пытаясь заполнить пробелы и выстроить систему. Физики, использовавшие математический метод, обособились в отдельную группу и продолжали работать с теорией поля, но большинство теоретиков предпочитали иметь дело с данными о частицах и искать общие принципы. Эти данные поступали в огромных объемах. Поиск симметрий означал, что ученые не были больше привязаны к микроскопической динамике поведения частицы. Если физик-теоретик продолжал записывать динамические показатели и размеры, теперь это считалось занятием почти предосудительным или как минимум глупым.

По мере углубления в симметрию также пришло осознание, что идеального равновесия не существует: чем больше внимания уделяли изучению ее законов, тем яснее становилось, что они не абсолютны. Отчетливее всего это было видно на примере самой явной из симметрий: право — лево. Человеческое тело кажется ее образцом, но это не совсем так. Любой врач скажет, что она нарушается смещением от центра сердца и печени, а также множеством тонких и незаметных различий. Мы и сами нарушаем эту симметрию, на бессознательном уровне усваивая разницу между правой и левой сторонами. Фейнман как-то признался группе ученых, собравшихся на чашку кофе в лаборатории Калтеха, что до сих пор интуитивно ищет родинку на тыльной стороне левой ладони, когда хочет определить, где правая и левая сторона. А в свою бытность в МТИ он размышлял над классическим ребусом зеркальной симметрии: почему в зеркале меняются местами лишь лево и право, но не верх и низ? Почему буквы в книге выглядят перевернутыми, но не опрокинутыми, а у двойника Фейнмана в зеркале родинка на правой руке? Возможно ли вывести теорию зеркального отображения, которая могла бы дать обоснование не только право- и левосторонней симметрии, но и симметрии «верх — низ»? Над этой загадкой раздумывали многие логики и ученые. Существует множество версий ее разгадки, и некоторые из них верны. Фейнман предложил предельно четкое объяснение.

Представьте, что стоите перед зеркалом, одной рукой указывая на восток, а другой — на запад. Махните «восточной» рукой. Отражение в зеркале махнет в том же направлении. Голова изображения находится наверху. «Западная» рука — на западе. Ноги стоят на земле. «Вроде бы все нормально», — говорит Фейнман. Проблема в оси, проходящей перпендикулярно зеркалу. Нос и ладонь оказываются перевернутыми: если нос повернут к северу, нос вашего двойника будет указывать на юг. И тут проблема становится психологической. Мы воспринимаем свое изображение в зеркале как другого человека. Поскольку мы не можем представить себя вывернутыми наизнанку, то представляем, будто прошли через зеркало, развернулись и встали к себе лицом. В процессе этого «разворота», который происходит только в нашей голове, право и лево меняются местами. То же происходит с книгой. Строки в книге идут справа налево, потому что мы поворачиваем книгу по вертикальной оси лицом к зеркалу. С таким же успехом можно было бы повернуть ее вверх ногами — и тогда строки перевернулись бы.

Индивидуальные нарушения симметрии — родинки, расположение сердца, право- и леворукость — являются следствием случайного выбора, сделанного природой в процессе создания сложных организмов. Право- и леворукость в биологии закладываются на уровне органических молекул, которые могут иметь свои предпочтения. Таким свойством обладают, к примеру, молекулы сахаров, напоминающие винт с левой или правой резьбой. Химики могут создать любые молекулы сахара, но бактерии переваривают лишь «праворукие» сахара — те, что производятся из сахарной свеклы. Обычной сахарной свеклы, хотя эволюция могла с таким же успехом сделать эти молекулы «леворукими», как и в ходе индустриальной революции большее распространение могли бы получить винты с левой, а не правой резьбой.

Что касается микромасштаба — уровня взаимодействия элементарных частиц, — физики решили, что здесь природных различий между правой и левой стороной существовать не может. Казалось невообразимым, что в зеркальном отображении законы физики будут меняться; ведь не меняются же они, когда эксперимент проводят в другое время или в другом месте? Разве может нечто столь бестелесное, как частица, обладать правой или левой «резьбой», подобно винту или клюшке для гольфа для право- или леворуких? В квантовой механике симметрия сторон существовала под видом величины, называемой четностью. Если квантовое событие сохраняло четность (а большинство физиков предполагали, что так должно быть), его исход не зависел от пространственной ориентации. И наоборот, если природа вдруг наделяла частицы «рукостью», экспериментатор приходил к выводу, что четность в данном событии не сохранялась. Когда Мюррей Гелл-Манн учился в аспирантуре МТИ, ему нужно было решить программную задачу одного из курсов: вывести сохранение четности математическим методом, переведя координаты из левоориентированной системы в правоориентированную. Гелл-Манн потратил целые выходные, но так и не выполнил задание. Потом он сказал преподавателю, что сама задача сформулирована неверно: сохранение четности — физический факт, рассматриваемый в рамках конкретной теории, а не абсолютная математическая истина.

Четность вновь стала головной болью физиков-теоретиков в 1956 году, когда экспериментальные данные, полученные из ускорителей, породили новую насущную проблему. Это была проблема тета-тау — двух странных частиц (согласно терминологии Гелл-Манна). Ученые столкнулись с типичными сложностями, каждый раз возникавшими при попытке структурировать ворох разрозненных данных из ускорителей. При распаде теты возникала пара пионов. При распаде тау — три пиона. Но во всем остальном тета и тау вели себя подозрительно схоже. Данные, полученные из космических лучей, а затем и из ускорителей, свидетельствовали, что масса и время жизни этих частиц были одинаковыми. Один экспериментатор в 1953 году зафиксировал тринадцать подобных фактов, а в 1956-м, к Рочестерской конференции, — уже более шестисот. Теоретики были вынуждены признать очевидное: тета и тау — на самом деле одна частица. Единственной проблемой оставалась четность: пара пионов была четным числом, тройка — нечетным. Если предположить, что при распаде частицы четность сохраняется, физикам ничего не оставалось, кроме как считать тау и тету разными частицами. Это жестоко противоречило их интуиции. Вскоре после окончания Рочестерской конференции Абрахам Пайс написал: «В поезде из Рочестера в Нью-Йорк я и профессор Янг поспорили с профессором Уилером на доллар, что тета- и тау-мезоны — две разные частицы; так профессор Уилер заработал два доллара».

Пари заключали все. Один из физиков спросил Фейнмана, насколько возможным тот считает получение в ходе эксперимента такого немыслимого результата, как нарушение принципа четности. Позднее Фейнман гордо вспоминал, что оценил шанс подобного исхода как пятьдесят к одному. Уже в Рочестере он сказал, что его сосед по гостиничному номеру, экспериментатор Мартин Блок, задался вопросом, а почему, собственно, четность не может нарушаться. (Позднее Гелл-Манн безжалостно подтрунивал над Фейнманом за то, что он задал вопрос от чужого имени.) В ответ кто-то нервно пошутил, что нельзя отметать даже самую невероятную возможность, а в официальном протоколе значилось:

«Допуская самый невероятный исход, Фейнман задал вопрос от имени Блока: возможно ли, что тета и тау являются двумя состояниями одной и той же частицы, не сохраняющей четность? Другими словами, возможно ли, что природа нашла уникальный способ предначертать право- и левоориентированность?»

Двое молодых физиков, Чжэньнин Янг и Чжэндао Ли, заявили, что начали исследовать эту проблему, но пока не пришли к конкретным выводам. Участникам конференции была настолько не по нраву идея нарушения четности, что один ученый выдвинул идею о существовании некой неизвестной частицы, которая покидала место взаимодействия тета-тау, не имея ни массы, ни заряда, ни импульса. Она лишь несла с собой «некие странные пространственно-временные трансформирующие свойства», как уборщик, вывозящий мусор на тележке. Гелл-Манн на это заявил, что не следует исключать другие, менее радикальные способы решения проблемы. Дискуссия продолжалась до тех пор, пока «председатель конференции» Оппенгеймер «не счел необходимым прервать этот полет фантазии».

Тем временем робкое предположение Фейнмана получило развитие. Ли и Янг начали исследовать данные. Для электромагнитного и сильного взаимодействия закон четности имел реальную экспериментальную и теоретическую основу: без сохранения четности упорядоченная система разваливалась. Однако для слабого взаимодействия, казалось, существует совсем другой закон. Ли и Янг прошерстили авторитетные тексты по бета-распаду, проверили формулы, изучили новейшую экспериментальную литературу по странным частицам и летом 1956 года пришли к выводу, что при слабом взаимодействии сохранение четности является не чем иным, как предположением, не имеющим прочной основы в виде результатов экспериментов или рациональной теории. Мало того, они поняли, что концепция странности Гелл-Манна представляет собой прецедент: при сильном взаимодействии симметрия сохраняется, при слабом — разрушается. Не откладывая в долгий ящик, они опубликовали работу, в которой уже официально заявляли о возможности нарушения четности при слабом взаимодействии и предлагали провести эксперимент, подтверждающий эту гипотезу. К концу года такой эксперимент провела группа ученых под началом Цзяньсюн Ву, коллеги Янга и Ли из Колумбийского университета. Это была непростая задача: ученые следили за распадом радиоактивного изотопа кобальта в магнитном поле при температуре, близкой к абсолютному нулю. «Верх» и «низ» в эксперименте определяло направление магнитной катушки: распадающийся кобальт «выстреливал» электроны либо симметрично влево и вправо, либо демонстрируя определенное предпочтение. Поджидая результаты эксперимента, Паули в Европе присоединился к спорщикам, он писал Вайскопфу: «Я не верю, что Господь — слабак и левша, и готов поставить круглую сумму, что эксперимент покажет симметричный результат». Но уже через десять дней обнаружилось, что он ошибался, а через год Янг и Ли получили Нобелевскую премию — и никогда еще между совершением открытия и вручением премии не проходило так мало времени. И хотя результаты этого исследования по-прежнему оставались непонятными для многих физиков, их важность была несомненна: оказалось, что природа действительно различает право и лево в самых глубинных своих основах. Ученые тут же взялись за рассмотрение других симметрий: материи и антиматерии, обратимости времени (если пленку с экспериментом прокручивали от конца к началу, с точки зрения физики все выглядело правильно, только право и лево менялись местами). Как сказал один физик, «мы больше не пытаемся закручивать болты в темноте в плотных рукавицах. Теперь болты подносят нам аккуратно разложенными на подносе, и на каждом есть стрелочка с указанием направления резьбы».

В научном сообществе, занимающемся физикой высоких энергий, Фейнман был странной фигурой. Он был старше блестящих ученых одного поколения с Гелл-Манном, но моложе нобелевских лауреатов уровня Оппенгеймера. Не уклонялся от дискуссий, но и не инициировал их. Остро интересовался текущими проблемами (как показывают его вопросы, касающиеся проблемы четности), но поражал молодых физиков своим равнодушием к новейшим концепциям, особенно в сравнении с Гелл-Манном. На конференции 1957 года как минимум одному участнику пришло в голову, что Фейнман мог бы применить свой талант теоретика и решить вопрос, заданный им же год назад, а не отдавать пальму первенства Янгу и Ли. (Тот же участник заметил, что физики погрязли в самооправданиях: теоретики от Дирака до Гелл-Манна «наперебой уверяли, что никогда не считали закон четности чем-то важным», а экспериментаторы вдруг вспомнили о своих намерениях провести эксперимент, подобный опыту мадам Ву.) Внешне Фейнман выглядел абсолютно спокойным, как и всегда, но вдали от любопытных глаз терзался из-за своей неспособности найти проблему, достойную изучения. Он стремился держаться подальше от популярных исследовательских направлений. Понимал, что безнадежно отстал и не в курсе даже опубликованных наработок Гелл-Манна и других физиков высоких энергий, но не мог заставить себя прочитать научные журналы и рукописи, которые ему ежедневно приносили и которые накапливались у него на полках. Каждая из этих работ напоминала ему детектив, где последняя глава идет в самом начале. Ему же хотелось, прочитав завязку, узнать достаточно, чтобы уяснить проблему и самостоятельно ее решить. Среди физиков он был почти единственным, кто отказывался рецензировать научные работы для журналов. Следить за чужой мыслью от начала до конца, наблюдая за процессом решения проблемы со стороны, казалось ему невыносимым. (Нарушив же собственное правило, он мог быть крайне жестоким. Например, в рецензии на одну статью он написал: «Мистер Берд весьма опрометчиво поступает, приводя в своей работе так много ссылок на другие научные труды; ведь если кто-то из его студентов заглянет в один из этих трудов, он никогда больше не станет читать работу Берда». Потом он умолял редактора не сообщать автору статьи о его отзыве: «Ведь мы с мистером Бердом хорошие друзья».) Зацикленность Фейнмана на поиске необычных, нестандартных путей обижала даже тех его коллег, которых он хотел похвалить. Например, он восхищался открытием, которое считалось второстепенным, или проявлял интерес к альтернативной версии теории, казавшейся недостойной внимания или слишком своеобразной. Некоторые теоретики стремились сотрудничать с коллегами, тем самым задавая тон и направление исследований для целых групп ученых. Гелл-Манн предпочитал работать именно так. Но Фейнману подобная манера была не по нраву; хотя его диаграммами пользовалось целое поколение физиков, он все равно был недоволен.

Иногда он делился своими переживаниями с сестрой Джоан, которая тоже начала строить научную карьеру: училась в докторантуре в Сиракузском университете и специализировалась на физике твердого тела. Фейнман наведывался к ней в Сиракузы, когда ездил в Рочестер. Он жаловался ей, что не может работать. А она напоминала ему о тех идеях, которыми он когда-то с ней делился, а потом бросал, так и не описав их в научных публикациях. «Ты делаешь это постоянно, — повторяла она. — Помнишь, ты говорил мне, что Блок, вероятно, прав? И что ты сделал, чтобы подтвердить его предположение? Когда тебе в голову приходят такие идеи, ради всего святого, записывай их!» Также Джоан вспомнила, что однажды он, размышляя о возможной связи между бета-распадом и распадом странных частиц под влиянием слабого взаимодействия, поделился с ней идеей создания универсальной теории слабых взаимодействий, и призвала его продолжить исследования, чтобы посмотреть, куда приведет эта нить.

В результате классического бета-распада нейтрон превращается в протон, выделяя электрон и нейтрино — еще одну частицу, не имеющую массы и заряда, которую очень трудно обнаружить. Заряд при этом сохраняется: у нейтрона его нет; у протона +1, у электрона –1. В семействе мезонов происходит то же самое: при распаде пиона образуются мюон (частица наподобие электрона, но более тяжелая — в 207 раз) и нейтрино. При наличии хорошей теории можно было бы предсказать как скорости распада в таких процессах, так и энергетические уровни выделяемых частиц. Однако существовали сложности. Необходимо было согласовать спины частиц, а при расчете спинов возникала проблема с их направлением. Особенно явно это проявлялось у безмассовых нейтрино. Поэтому открытие нарушения четности мгновенно преобразило теорию слабых взаимодействий для Фейнмана, Гелл-Манна и других ученых.

Анализируя различные виды взаимодействия частиц, теоретики создали систему классификации, включавшую пять отчетливых трансформаций волновых функций. В каком-то смысле это была систематизация известных алгебраических техник; но ее также можно было назвать классификацией типов виртуальных частиц, возникавших в различных взаимодействиях на основе спинов и четности. Физики использовали сокращения S, T, V, A и P, обозначавшие скалярные, тензорные, векторные, векторно-осевые и псевдоскалярные частицы. Различные виды слабых взаимодействий обладали очевидным сходством, но в связи с этой схемой классификации возникал вопрос. На Рочестерской конференции 1957 года Ли отметил, что для большинства опытов с бета-распадом характерно скалярное и тензорное взаимодействия, однако в новых экспериментах с нарушением четности при распаде мезонов чаще проявляется векторный и векторно-осевой тип. Все это указывает на то, что в первом и втором случае действуют разные законы физики.

Читая статью Ли и Янга накануне конференции — Джоан велела ему сесть за стол, как студенту, и прочесть публикацию от корки до корки, — Фейнман увидел альтернативный способ сформулировать закон нарушения четности. Ли и Янг описали ограничения, связанные со спином нейтрино. Фейнману эта идея понравилась, и, урвав пять минут у другого выступающего, он упомянул об этом. Затем вернулся к истокам квантовой механики — не только к уравнению Дирака, но и к уравнению Клейна — Гордона, которое они с Велтоном вывели, будучи аспирантами МТИ. Используя интегралы по траекториям, он пошел дальше и получил — или открыл — уравнение, слегка отличающееся от дираковского. Это было более простое равенство из двух компонентов (у Дирака их было четыре). «И я задал себе такой вопрос, — сказал Фейнман. — Что, если бы мое уравнение возникло раньше уравнения Дирака? Ведь оно имеет абсолютно те же следствия и для его описания тоже можно использовать диаграммы».

В диаграммах, описывающих бета-распад, добавлялось поле нейтрино, взаимодействующее с полем электрона. Когда Фейнман внес в свое уравнение необходимые изменения, он сделал вывод, что «этого, разумеется, сделать нельзя, потому что нарушается четность. Но так как при бета-распаде четность не сохраняется, то это возможно!»

Оставались две сложности. Первая: спин у Фейнмана получился с противоположным знаком. Нейтрино должен был иметь спин, противоположный предсказанному Ли и Янгом. Вторая: в формуле Фейнмана использовалось векторное и векторно-осевое взаимодействие, а не скалярное и тензорное, которые, как известно, были верными.

Тем временем проблема создания теории слабых взаимодействий занимала не только Фейнмана, но и Гелл-Манна. И они были не единственными: Роберт Маршак и его молодой коллега Джордж Сударшан также склонялись к тому, что правильными были векторное и векторно-осевое взаимодействия. Именно Маршак впервые предположил, что существует два типа мезонов, — это произошло на конференции в Шелтер-Айленде в 1947 году. А летом 1957 года, пока Фейнман был в Бразилии, Маршак и Сударшан встретились с Гелл-Манном в Калифорнии и изложили ему свою теорию.

Фейнман вернулся в конце лета, решив в кои-то веки изучить последние результаты лабораторных исследований и довести до конца свою теорию слабых взаимодействий. Он посетил лабораторию Ву в Колумбийском университете и попросил экспериментаторов из Калтеха сообщать ему все данные, которые они получали в последнее время. В данных царил полный кавардак, одно противоречило другому. Один из калтеховских физиков сказал, что Гелл-Манн даже начал задумываться о правильности не скалярного, а векторного взаимодействия. Как позднее вспоминал Фейнман, именно это предположение навело его на верную мысль.

«В тот самый момент я вскочил со стула и воскликнул: “Тогда все ясно! Я понял, в чем дело, и завтра утром вам все объясню”. Они тогда подумали, что я шучу. Но я не шутил. Мои мысли освободились от ограничивающего их стереотипа, будто все, что мне нужно, — скалярное и тензорное взаимодействие; моя теория допускала возможность векторного и векторно-осевого произведения — и это был правильный ответ, точный и безупречный».

Он набросал черновик публикации за пару дней. Однако Гелл-Манн решил, что тоже должен написать работу. По его мнению, у него были свои причины сосредоточиться на векторном и векторно-осевом взаимодействии: он хотел вывести универсальную теорию. Электромагнитное взаимодействие зависело от векторной связи, а странные частицы «предпочитали» векторное и векторно-осевое. К тому же ему не нравилось, что Фейнман, казалось, столь легкомысленно пренебрегает своими идеями.

Тут в дело вмешался декан физического факультета Роберт Бахер. Он не хотел, чтобы между учеными росла напряженность и чтобы два физика Калтеха создали противоборствующие версии одного открытия, поэтому попросил Фейнмана и Гелл-Манна написать совместную работу. В университетских коридорах и столовой коллеги напрягали уши, пытаясь уловить хотя бы обрывки разговоров Фейнмана и Гелл-Манна, поглощенных обсуждениями. Несмотря на различия в подходах, они мотивировали друг друга. Фейнман говорил: «Смотри, вот эта штука пролетает вот здесь, и остается только слепить всё вместе — вот так». Гелл-Манн перефразировал: «Заменяем элементы и интегрируем». Их статья вышла в Physical Review в сентябре — за несколько дней до того, как Маршак и Сударшан представили аналогичную теорию на конференции в итальянском городе Падуя. Но теория Фейнмана и Гелл-Манна оказалась глубже во многих важных аспектах. Она распространяла принципы, управляющие процессом бета-распада, на другие типы взаимодействия частиц; многие годы спустя их провидческие данные полностью подтвердились экспериментально. Они также выдвинули идею о том, что существует вид тока, подобного электрическому (потоку электрического заряда), который имеет свойство сохраняться; развитие этой концепции стало главным инструментом в физике высоких энергий.

Фейнман позднее вспоминал их сотрудничество. Гелл-Манну оно далось нелегко; особенно ему не нравились двухкомпонентные формулы: он считал их ужасным способом исчисления. Работа, безусловно, носила фейнмановский отпечаток: он применял формулы квантовой электродинамики, которые использовал еще в своем первом исследовании 1948 года, посвященном интегралам по траекториям. Гелл-Манн позволил ему вставить в текст примечание личного характера: «Один из авторов представленной работы всегда питал особое пристрастие к этому уравнению». Зато фразы вроде «подход авторов к нарушению четности имеет определенную степень теоретически разумного обоснования» были совершенно не в стиле Фейнмана. Очевидным было и стремление Гелл-Манна представить теорию как максимально универсальную и передовую. В сравнении с другими важнейшими открытиями современной физики их находка была более глубокой и менее понятной. Но если бы Фейнман, Гелл-Манн, Маршак и Сударшан не совершили это открытие в 1957 году, скоро это сделал бы кто-то другой. Однако для Фейнмана суть этого открытия, как и любого другого достижения в его карьере, состояла в первую очередь в познании законов природы. Образцом для подражания ему всегда служил Дирак и его «волшебное» уравнение, описывающее движение электрона. Теперь можно было в определенном смысле сказать, что Фейнман открыл такое же уравнение для нейтрино. «В какой-то момент я понял, как работает природный механизм, — вспоминал он. — Я увидел в этом элегантность и красоту. Это было как озарение».

Для других физиков «Теория взаимодействия Ферми» длиной всего шесть страниц стала маяком в мире научной литературы. Казалось, она возвещала о начале плодотворного сотрудничества двух великих умов, идеально дополнявших друг друга. Оба занимали четкую теоретическую позицию, неоднократно заявляли об универсальности, простоте, сохранении симметрии, широком спектре применения теории в будущем. Оба исходили из общих принципов, а не из частных расчетов динамики, и делали ясные предсказания относительно новых видов распада частиц. Они перечисляли эксперименты, противоречащие их теории, и утверждали, что эти эксперименты ошибочны. Никогда еще теоретическая физика столь блестяще не заявляла о своем превосходстве.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК