Квантовая жидкость

We use cookies. Read the Privacy and Cookie Policy

Писатели-фантасты, создававшие свои романы в то время, руководствовались одним интересным правилом: не давать слишком большую волю воображению, временами проявлять консерватизм. Для создания необычного нового мира достаточно изменить одну-две черты привычной реальности, и неожиданные последствия не заставят себя ждать. Так и в природе: стоило внести небольшие изменения в один-единственный закон, и возникал совершенно удивительный феномен.

На примере сверхтекучего гелия физики увидели, что происходит, когда жидкость течет без трения. Речь шла не о низком трении, а нулевом. Жидкость, находящаяся в спокойном состоянии, спонтанно скользила вверх по стенкам емкости, обволакивая их тонкой пленкой и нарушая все законы гравитации. Она проникала сквозь микроскопические трещины и отверстия, через которые не мог пройти даже газ. Как бы идеально ни были отполированы две стеклянные пластины, как бы плотно их ни прижимали друг к другу, сверхтекучий гелий свободно тек между ними. Эта жидкость проводила тепло гораздо лучше любого другого вещества и даже при сильном охлаждении не переходила в твердое состояние.

Для Фейнмана рассуждения о сверхтекучести были пронизаны изначальным, ребяческим интересом — так детей волнуют вопросы, «как это устроено». Все дети в душе физики, считал он: их делала такими увлеченность, с которой они наблюдали за водой в ванне или лужах на тротуаре, пытались перекрыть ручеек, бегущий по улице после ливня, размышляли над движением воды в водопадах и воронках. В стремлении понять суть этого явления он вновь обратился к основам, к базовым принципам. Что такое жидкость? Вещество, текучее или газообразное, не способное выдерживать напряжение сдвига, но движущееся под действием силы. Свойство жидкости сопротивляться напряжению называется вязкостью или внутренним трением. Вязкость меда больше, чем у воды, а вода более вязкая, чем воздух. Пытаясь вывести первые рабочие уравнения для определения текучести, физики XIX века обнаружили, что вязкость — особенно сложный критерий, рассчитать который невозможно. Чтобы упростить задачу и избежать ненужных осложнений, они часто создавали модели, в которых вязкость не учитывалась вовсе (и именно этим заслужили насмешки Джона фон Неймана); это было делом обычным. Но в данном случае исследователи динамики жидкостей упустили из виду важнейшее и определяющее качество. Фон Нейман с сарказмом называл их «теоретиками сухой воды». А сверхтекучий гелий, по словам Фейнмана, по сути и был этой немыслимой, казалось бы, субстанцией — жидкостью без вязкости. Сухой водой.

У сверхтекучести был не менее странный близнец — сверхпроводимость, отсутствие сопротивления вещества при протекании по нему электрического тока. Оба феномена были открыты в ходе экспериментов с охлаждением веществ до сверхнизких температур. Сверхпроводимость открыли в 1911 году, сверхтекучесть лишь в 1938-м — из-за сложностей, с которыми сталкивались ученые в процессе наблюдений за поведением жидкости внутри контейнера размером с булавочную головку, помещенного в криостат. Несмотря на свою малопонятную эзотерическую природу, к 1950-м годам эти феномены стали самой горячей темой в теоретической физике, не считая элементарных частиц. В понимании механизмов вечного движения жидкости — своего рода «вечного двигателя» — не намечалось почти никакого прогресса. Фейнману сверхтекучесть и сверхпроводимость представлялись «двумя городами в осаде… со всех сторон окруженными знаниями, но изолированными и неприступными». Помимо Ландау, большой вклад в теорию сверхтекучести внес знаменитый химик из Йельского университета Ларс Онзагер, чьи сложнейшие курсы по статистической механике иногда называли «норвежским для начинающих» и «норвежским для продолжающих» (Онзагер говорил с норвежским акцентом).

В природе существовал еще один вечный двигатель, хорошо знакомый квантовым физикам, — движение на уровне электронов внутри атома, которое не замедлялось ни трением, ни рассеянием. Потеря энергии или трение возникали лишь при взаимодействии между скоплениями атомов. Неужели хаос, царивший в мире классического вещества, не имел отношения к этим сверхфеноменам? Было ли это одним из проявлений квантовой механики в макромире? Возможно ли, что весь аппарат волновых функций, энергетических уровней и квантовых состояний мог применяться и в макромасштабе? Самым очевидным признаком того, что здесь физики имели дело с квантовым феноменом в «увеличенном» масштабе, было свойство гелия не замерзать до твердого кристаллического состояния даже при охлаждении до сверхнизких температур. В классической физике абсолютный ноль часто определяли как температуру, при которой прекращается все движение. В квантовой механике такой температуры не было. Движение атомов не прекращалось никогда. Понятие нуля нарушало принцип неопределенности, поскольку при «классическом» абсолютном нуле все движение прекращалось и неопределенность импульса исчезала.

Ландау и другие физики подготовили почву, выдвинув несколько ценных идей о природе жидкого гелия. Одна из этих концепций, надолго закрепившаяся в физике твердых состояний, касалась новых структур — «квазичастиц», или «элементарных возбуждений». Речь шла о движении внутри материи групп частиц, взаимодействующих друг с другом. Одним из примеров этого явления стали квантовые звуковые волны — фононы[147]. В жидком гелии также обнаружились структуры, в которых совершалось вихревое движение, — их назвали ротонами. Фейнман пытался проработать эти идеи. Он также исследовал природу жидкого гелия, который вел себя так, будто обладал свойствами двух сосуществующих субстанций — обычной жидкости и сверхтекучей (любые формулировки в данном случае было совершенно необходимо дополнять словом «будто»).

Двойственность природы этого вещества проявлялась в ходе опытов. В круглую мензурку (по форме напоминавшую велосипедную покрышку) засыпали порошок, после чего наполняли ее жидким гелием. Мензурку вращали и резко останавливали. Обычно порошок препятствовал движению любой жидкости. Но благодаря своему сверхтекучему компоненту жидкий гелий продолжал скользить по кругу, просачиваясь сквозь микроскопические пустоты в порошке и игнорируя присутствие другой — обычной — жидкости. Студенты ощущали его течение, чувствуя сопротивление кольца вращению — подобно тому, как вращающийся гироскоп сопротивляется боковому давлению. Сверхтекучее вещество было способно продолжать движение до тех пор, пока существует Вселенная.

В 1955 году в Нью-Йорке на собрании Американского физического общества Фейнман поразил группу студентов Онзагера из Йельского университета, описавших свой новый эксперимент с вращающимися ковшами. (В исследованиях, связанных со сверхнизкими температурами, «ковшом» называлась мензурка размером с наперсток.) Фейнман встал и заявил, что во вращающемся ковше со сверхтекучей жидкостью воронки имели бы своеобразную форму — они бы нитями свисали вниз. Выступающие не поняли, что он имел в виду. А Фейнман именно так представлял себе поведение жидкого гелия на уровне атомов, визуализируя движение отдельных частиц внутри жидкости. Напрямую, насколько это было возможно, он рассчитал силы их взаимодействия, применив методы, которые использовал еще в дипломной работе с Джоном Слейтером. Он убедился, что, как и предполагал Ландау, вихревое движение действительно возникает, и применил квантово-механическое ограничение, взяв одно такое движение как неделимую единицу. Изначально проблемой было найти подходящую визуализацию для элементарного возбуждения сверхтекучей жидкости. Одним из вариантов был атом, качающийся в клетке. Или пара атомов, вращающихся вокруг друг друга. Или небольшое крутящееся кольцо атомов. Сложность состояла в том, чтобы найти решение квантово-механической задачи с участием множества частиц, не прибегая к формальному математическому методу.

Однажды ночью Фейнман лежал в постели без сна и пытался воссоздать картину того, как, собственно, возникает вращение. Он представил себе жидкость, разделенную тонким листом — воображаемой непроницаемой мембраной. С одной стороны листа жидкость была неподвижна; с другой — обладала текучестью. Он знал, как записать классическую волновую функцию Шрёдингера для обоих состояний. Затем представил, что лист исчезает. Каким образом можно объединить две волновые функции? Он подумал о соединении разных фаз и предположил существование некоего поверхностного напряжения, энергии, пропорциональной площади поверхности листа-разделителя. Погрузился в размышления о том, что произойдет, если один-единственный атом перейдет эту границу: в какой фазе энергетической волны поверхностное напряжение упадет до нуля и атом придет в свободное движение? Перед его глазами плоскость разделилась на клейкие полосы, где атомы не могли смешиваться, и другие, более узкие полосы, где атомы имели возможность меняться местами. Он рассчитал, сколько энергии понадобится на искажение волновой функции и удержание атомов на месте, и понял, что ширина полос свободного движения будет равна ширине атома. Затем в его воображении возникли закручивающиеся в воронку линии, вокруг которых по кольцу вращались атомы. Эти кольца напоминали кружок детей, по очереди катающихся с горки. Стоило одному скатиться вниз — то есть волновой функции изменить знак с положительного на отрицательный, — как другой тут же занимал позицию наверху. Но движение жидкости представляло собой нечто большее, чем двухмерное кольцо. Подобно колечку дыма, оно вихреобразно закручивалось еще и в третьем измерении. Фейнман пришел к такому выводу через двадцать лет после своих первых исследований динамики дымовых колец, которыми он занимался в школьном клубе юных физиков. Эти квантовые воронки образовывались вокруг самого крошечного отверстия, которое только можно было представить, — отверстия всего в атом шириной.

В течение следующих пяти лет Фейнман написал цикл статей, посвященных его работе над теорией взаимосвязи энергии и движения в квантовой жидкости. Вихревые линии стали фундаментальной единицей, неделимым квантом системы. Они устанавливали ограничения, регулирующие энергообмен внутри жидкости. Если мензурка была слишком тонкой или скорость потока недостаточно высокой, то вихри не формировались, а поток оставался неизменным, не теряя энергии и, следовательно, не обладая сопротивлением. Фейнман продемонстрировал условия, в которых возникают и исчезают вихревые линии; зафиксировал момент, когда они начинают сплетаться, образовывая клубки и порождая еще один неожиданный феномен, до сих пор никем не наблюдавшийся в лабораторных условиях, — турбулентность сверхтекучей жидкости. Администрация Калтеха наняла специалистов по работе со сверхнизкими температурами, и Фейнман стал тесно сотрудничать с ними. Он выяснил все об устройстве аппарата и вакуумных насосов, в которых охлаждение происходило в результате снижения давления пара, а герметичность обеспечивалась за счет резиновых уплотнительных колец. Вскоре по институту разнесся слух о «типично фейнмановском» эксперименте. К тонкому кварцевому волокну, свисающему из трубки, подсоединялись крошечные «крылышки» — лопасти. Затем в трубку строго вертикально заливали сверхтекучую жидкость. В эксперименте с обычной жидкостью лопасти начали бы вращаться, как маленький пропеллер, но со сверхтекучей этого не происходило: она просто проскальзывала мимо. В поиске сверхлегких лопастей экспериментаторы (если верить их словам) поймали несколько мух, и исследование вошло в историю как «эксперимент с мушиными крыльями».

Метод Фейнмана и его быстрый успех поразили физиков, которые начали работать со сжатой материей гораздо раньше и продолжили исследования в этой сфере после того, как он прекратил этим заниматься. Не прибегая к прославившим его инструментам — диаграммам или интегралам по траекториям, — Фейнман начал разрабатывать тему с визуализации, ментальных образов. Этот электрон толкает другой; а этот ион отскакивает, как мячик на резинке. Коллеги сравнивали его с художником, способным запечатлеть человеческое лицо всего тремя-четырьмя быстрыми выразительными штрихами.

Но не все его исследования увенчивались успехом. Одновременно со сверхтекучестью он бился над сверхпроводимостью и здесь в кои-то веки потерпел неудачу. (Хотя подошел к решению проблемы очень близко. Однажды перед отъездом в путешествие он набросал целый лист заметок, начинавшийся со слов: «Кажется, я нашел основной источник сверхпроводимости». В центре внимания Фейнмана оказалась особая разновидность взаимодействия фононов и одно из характерных свойств сверхпроводимости, обнаруженных экспериментальным путем, — изменение удельной теплоемкости вещества. Он понимал, что тут «что-то не сходится», и указал на это в своих заметках, но надеялся преодолеть возникшие трудности. Внизу он подписал: «На случай, если я не вернусь: с вами был Р. Ф. Фейнман».) В 1957 году трое молодых физиков, зная, что Фейнман наступает им на пятки, сумели вывести успешную теорию сверхпроводимости[148]. Их звали Джон Бардин, Леон Купер и Роберт Шриффер. Годом ранее Шриффер присутствовал на лекции Фейнмана, посвященной двум феноменам: в основе одного из них лежала проблема, которую ему удалось решить, суть же другого от него ускользнула. Никогда в жизни Шриффер не слышал, чтобы ученый с такой увлеченностью, во всех подробностях рассказывал о работе, закончившейся провалом. Фейнман с бескомпромиссной искренностью описывал каждый неверный шаг и ошибочный вывод, каждую неудачную визуализацию.

Решить эту задачу не помогут никакие приемы и сложные расчеты, заявил тогда Фейнман. Единственный способ — угадать ответ, его очертания и форму. То, что экспериментов со сверхпроводимостью проводится недостаточно, нас не извиняет. Эксперименты тут ни при чем. Это же не мезоны, характер движения которых человеческому уму разгадать невозможно, если нет ключей и подсказок. В случае со сверхпроводимостью не нужно смотреть на результаты опытов… Это все равно что заглядывать в конец учебника, чтобы узнать ответ. Единственное, что мешает нам разработать теорию сверхпроводимости, — нехватка воображения.

Шриффер должен был законспектировать это выступление Фейнмана для публикации в научном журнале. Но из-за обрывочных рассуждений и откровенных признаний статья получилась слишком похожей на устную речь, и ему пришлось отредактировать материал. Однако Фейнман заставил его вернуть статье первоначальный вид.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК