Новейшая физика
«Теория краткости» и «теория малого» заметно сужали взгляд нескольких дюжин ученых, вынуждая говорить о физике в прошедшем времени. Львиная доля человеческого опыта лежала в рамках реальности, о которой нельзя было сказать кратко или мало. Это реальность, где теория относительности и квантовая механика казались неуместными и неестественными, где реки просто текли, облака плыли, бейсбольные мячи летели и закручивались — и все это можно было описать с помощью классических методов. Однако современной физике больше нечего предложить молодым ученым, увлеченным поисками фундаментальных знаний о структуре Вселенной. Они не могли игнорировать решительную, смелую и противоречащую всему риторику квантовой механики, как не могли не принимать во внимание и провозгласившее объединение поэтичное высказывание учителя Эйнштейна Германа Минковского[56], который писал: «Отныне время само по себе и пространство само по себе становятся пустой фикцией, и только единение их сохраняет шанс на реальность».
Впоследствии квантовая механика проникла в мировую культуру мистическим туманом. Никакой конкретики, сплошные случайности. Это была новая версия Дао[57], богатейший источник парадоксов, проницаемая мембрана между наблюдателем и его объектом, нечто сомнительное, сотрясающее подмостки науки, в которой все ясно и определенно. Однако в тот период квантовая механика была всего лишь необходимым и полезным инструментом для тщательного описания природы на мельчайших масштабах, теперь доступных для экспериментов.
Вселенная казалась такой непрерывной. Однако постоянно можно было видеть технические приспособления, принцип действия которых основан на дискретности и прерывистости. Движение зубчатых приводов и храповиков осуществлялось крошечными скачками, телеграф передавал сообщения, закодированные точками и тире. А свет, излучаемый веществом? При нормальной (комнатной) температуре он инфракрасный, а его длины волн слишком большие, чтобы быть видимыми человеческому глазу. При более высоких температурах вещество излучает более короткие световые волны, именно поэтому раскаленный в кузнице железный брусок становится красным, желтым или белым (чем горячее — тем белее). На стыке веков ученые изо всех сил пытались понять, как связаны длина волны излучения тела и температура излучающего тела. Если считать, что тепло обусловлено движением молекул, то, возможно, именно эта определенная излучаемая энергия и вызвана внутренними колебаниями, вибрацией с собственной резонансной частотой по аналогии со скрипичной струной. Немецкий физик Макс Планк развил эту идею до ее логичного завершения и заявил в 1900 году о необходимости серьезно пересмотреть традиционный взгляд на энергию. Его уравнения были верны только в том случае, если предположить, что излучение происходит лишь в виде отдельных дискретных порций, названных им квантами. Он рассчитал величину новой константы, наименьшей доли энергии, кратной этим порциям. Это была единица измерения, обозначающая не энергию, но произведение энергии и времени[58], — величина, названная действием.
Пять лет спустя Эйнштейн использовал постоянную Планка, чтобы объяснить другую загадку — фотоэлектрический эффект, проявляющийся в том, что свет, поглощенный металлом, выбивал электроны и приводил к появлению электрического тока. Основываясь на том, как длина волны и сила тока связаны между собой, он пришел к выводу, что свет при взаимодействии с электронами ведет себя не как непрерывная волна, а как дискретная последовательность порций излучения[59].
Это было сомнительное утверждение. Большинство физиков находили специальную теорию относительности Эйнштейна, опубликованную в том же году, куда более приемлемой. Но в 1913 году молодой датчанин Нильс Бор, работавший в лаборатории Эрнеста Резерфорда в Манчестере, предложил новую модель строения атома, в основу которой легло представление о квантах энергии. В модели Резерфорда атом представляет собой Солнечную систему в миниатюре: электроны движутся по орбитам вокруг ядер. Без квантовой теории физикам пришлось бы признать, что электроны постепенно по спирали должны приближаться к центру атома, непрерывно излучая и теряя свою энергию. В результате произошло бы разрушение атома как такового. Бор же предложил модель атома, в которой электроны могли находиться только на заданных орбитах, предписанных постоянной Планка. Когда электрон поглощал квант света, он перескакивал на более высокую орбиту. Вскоре этот процесс станет известен всем как квантовый скачок. Когда электрон переходил на более низкую орбиту, он излучал квант света определенной частоты. Все остальное запрещено. Что происходит с электроном, когда он находится между орбитами? Об этом лучше не спрашивать[60].
В основе квантовой механики как раз и лежало представление об этом новом виде неоднородности, новом научном понимании энергии. Оставалось только создать теорию и математическую конструкцию, которая обеспечила бы идее жизнеспособность. Об интуиции можно забыть. Для вероятности и причин появились новые определения. Намного позже, когда большинство физиков, стоявших у истоков квантовой механики, уже покинуло этот мир, Дирак, худощавый, с волосами, белыми, как мел, с тонкой дорожкой седых усов, превратил рождение квантовой механики в маленькую легенду. К тому времени многие ученые и писатели уже делали это, но редко кому удавалось облечь все в такую смелую, незамутненную и простую форму. Были герои и почти герои, те, кто подошел к самому краю, и те, у кого хватило смелости и веры в уравнения, чтобы пойти дальше.
Моралите[61] Дирака начиналось с Лоренца. Этот голландский ученый понял, что свет излучают колеблющиеся заряды внутри атомов, и в результате произведенных им преобразований алгебры пространства и времени получил странный результат, из которого следовало, что материя сжимается на скорости, близкой к скорости света[62]. Дирак говорил: «Лоренц преуспел в выводе всех основных уравнений, необходимых для того, чтобы установить относительность времени и пространства, но не смог сделать финальный шаг». Страх сковывал его.
Затем на сцене появлялся смельчак Эйнштейн. Он был уже не так сдержан. Он пошел дальше и заявил, что время и пространство взаимосвязаны.
Гейзенберг начал развивать квантовую механику с «блестящей идеи», которая заключается в том, что «нужно попытаться создать теорию, взяв за основу данные, полученные в результате экспериментов, а не так, как делали раньше, исходя из модели атома, включающей в себя много величин, которые невозможно вычислить». Это не что иное как новая философия — так сказал об этом Дирак.
(Примечательно, что в нехарактерном для Дирака высказывании не упоминался Бор, чья модель атома водорода, созданная в 1913 году, как раз и представляла старую философию. Электроны вращаются вокруг ядер? В записях Гейзенберг называл это бессмыслицей: «Все мои усилия направлены на то, чтобы окончательно разрушить идею существования орбит». Можно наблюдать свет разной частоты, излучаемый атомом. Но невозможно увидеть электроны, вращающиеся по миниатюрным планетарным орбитам, так же как нельзя увидеть и структуру атома.)
Шел 1925 год. Гейзенберг решил развивать свою теорию, к чему бы она ни привела, а привела она к результатам столь непонятным и удивительным, что он не на шутку испугался. Казалось, величины, полученные Гейзенбергом, их численные значения в матричном выражении, нарушали закон коммутативности умножения, утверждающий, что а, умноженное на b, равняется b, умноженному на а. Они имели серьезные последствия. Из уравнений Гейзенберга, выраженных в такой форме, следовало, что нельзя с определенной точностью определить импульс и положение частицы[63]. Нужно было вводить понятие неопределенности. Рукопись Гейзенберга попала в руки Дираку. Он изучил ее. «Видите ли, — сказал он, — у меня было преимущество перед Гейзенбергом. Я не боялся».
Тем временем Шрёдингер пошел другим путем. Двумя годами ранее его поразила идея де Бройля о том, что электроны, эти маленькие точечные носители заряда, на самом деле не являются ни частицами, ни волнами, а представляют собой некую комбинацию того и другого. Шрёдингер поставил перед собой цель вывести волновое уравнение, «очень стройное и красивое уравнение», которое бы позволяло вычислить поведение электронов под воздействием полей, когда они находятся внутри атома.
Он проверил уравнение, рассчитав оптический спектр, излучаемый атомом водорода. Результат — провал. Эксперимент шел вразрез с теорией. В конце концов Шрёдингер обнаружил, что, если не учитывать эффект относительности (релятивистские эффекты), его теория гораздо больше будет соответствовать результатам наблюдений. И тогда он опубликовал эту менее амбициозную версию своего уравнения.
Опасения снова торжествовали победу. «Шрёдингер был слишком робок», — говорил Дирак. Клейн[64] и Гордон[65] копнули глубже, дополнили теорию и опубликовали свои открытия. Они оказались «достаточно смелыми», их не слишком волновали экспериментальные результаты, и именно поэтому первое релятивистское волновое уравнение носит их имена.
Тем не менее результаты даже очень тщательно проведенных расчетов уравнения Клейна — Гордона не соответствовали результатам экспериментов. В нем было что-то такое, что казалось Дираку болезненно нелогичным. Из уравнения следовало, что вероятность некоторых событий должна быть отрицательной, то есть меньше нуля. «Отрицательные вероятности, — отметил Дирак, — совершенно абсурдны».
Дираку теперь оставалось лишь вывести уравнение электрона. Или лучше сказать «придумать», «открыть»? И оно выглядело потрясающе красивым в своей абсолютной простоте и неизбежности, к которой с таким трепетом относились физики. Это успех. Уравнение совершенно точно предсказало значение (а для физиков это значит «объясняло») недавно открытой величины, которую назвали «спин», и спектр водорода. Это уравнение стало для Дирака достижением всей жизни. Шел 1927 год. «Так начиналась квантовая механика», — провозгласил Дирак.
Это было время, когда в физику пришли практически мальчишки (Knabenphysik — нем.). Когда они начинали, Гейзенбергу было двадцать три, а Дираку — двадцать два. Шрёдингер среди них казался уже тридцатисемилетним старичком, но, как заметил один историк, свои открытия он сделал «в период позднего эротического подъема». Новая «физика от мальчишек» началась в МТИ весной 1936 года. Дик Фейнман и Ти Эй Велтон жаждали проложить себе путь в квантовую теорию, но по этому зарождающемуся, еще более непонятному, чем теория относительности, направлению еще не было отдельного курса. Руководствуясь лишь отдельными публикациями, они занялись самообразованием. Их сотрудничество началось в комнате для занятий общежития братства на Бей-Стейт-Роад и продолжалось даже после весенней сессии. Фейнман вернулся домой в Фар-Рокуэй, Велтон — в Саратога-Спрингс. Они пересылали друг другу по почте блокнот и за считаные месяцы законспектировали практически все, что касалось революционных открытий 1925–1927 годов.
23 июля Велтон писал:
«Привет, Р. <…> Я видел твое уравнение:
Это было релятивистское уравнение Клейна — Гордона. Фейнман переосмыслил его, совершенно верно приняв во внимание тенденцию увеличения массы вещества на скорости, близкой к скорости света. Это уже не обычная квантовая механика, а релятивистская. Велтон пришел в восторг. «Почему ты не применил свое уравнение к атому водорода и не посмотрел, что получится?» — спрашивал он. Вслед за Шрёдингером, который сделал это десять лет назад, они провели вычисления и поняли, что уравнение неверно, по крайней мере, в том, что касалось точных данных.
«Вот, смотри! Как ведет себя электрон в гравитационном поле тяжелых частиц? Конечно же, электрон что-то привнесет в это поле…»
«Как думаешь, можно ли квантовать энергию? Чем больше я об этом размышляю, тем интереснее становится. Я хочу попробовать…»
«Вероятно, я получу уравнение, которое все равно не смогу решить», — добавил Велтон с сожалением. (Когда пришла очередь Фейнмана писать в блокноте, он чиркнул на полях: «Точно!») Велтон далее писал: «Вот в этом и состоит проблема квантовой механики. Довольно легко составить уравнение для самых разных задач, но чтобы решить, потребуется ум, в два раза более мощный, чем дифференциальный анализатор»[66].
Общая теория относительности, которой к тому моменту едва исполнилось десять лет, объединила гравитацию и пространство в единое целое. Гравитация приводила к искривлению пространства-времени. Велтону хотелось большего. Почему бы не связать электромагнетизм с пространственно-временной геометрией? «Теперь ты понимаешь, что я имею в виду, когда говорю, что хочу сделать электрические явления следствием метрики пространства, таким же образом, как гравитационные явления. Интересно, не может ли твое уравнение расширить аффинную геометрию Эддингтона…» В ответ на это Ричард написал: «Я пробовал. Пока не получилось».
Фейнман также попытался изобрести операционное исчисление, написав правила дифференцирования и интегрирования величин, которые не соотносятся между собой. Правила должны зависеть от порядка величин и матричных представлений сил в пространстве и времени. «Теперь, я думаю, я ошибся, заменив интегрирование по частям, — писал Ричард. — Я метался между правильным и неправильным».
«Теперь я знаю, что прав… В моей теории гораздо больше “фундаментальных” постоянных, чем в любой другой».
Так они и продолжали. «Ура! После трех недель работы… Я наконец нашел простое доказательство, — писал Фейнман. — Но не буду о нем. Единственное, почему я хотел это сделать — потому что не получалось. И еще потому, что чувствовал, что An и их производные связаны сильнее, что я не учел раньше… Может быть, я включу в метрику электричество! Спокойной ночи. Мне нужно уже идти спать».
Уравнения приходили в голову быстро, и Фейнман записывал их карандашом в блокноте. Иногда он называл их законами. Совершенствуя технику вычислений, Ричард постоянно задавался вопросом, что именно является основополагающим, а что вторично, какие законы основные, а какие — производные. В перевернутом с ног на голову мире зарождающейся квантовой механики ничего нельзя считать очевидным. Гейзенберг и Шрёдингер шли к одной и той же физике совершенно разными путями. Каждый из них имел дело с отвлеченными понятиями и отвергал наглядность. Даже волны Шрёдингера шли вразрез с общепринятым представлением. Это не волны материи или энергии, а волны вероятности, пронзающей математическое пространство. Часто само это пространство напоминало пространство классической физики, в котором координаты определяют положение электрона. Но физики предпочли использовать импульсное пространство (обозначаемое P?) — систему координат, в которой определяется импульс частицы, а не ее положение, или, другими словами, основанную на направлении волнового фронта, а не на положении конкретной точки внутри него. В квантовой механике принцип неопределенности означает, что положение и импульс частицы невозможно определить одновременно. В августе после окончания второго курса Фейнман начал работать в системе обобщенных координат (Q?), менее удобной с точки зрения волн, но более поддающейся наглядному представлению.
«P? ничуть не более основательно, чем Q?, и наоборот. Почему же тогда P? играет такую важную роль в теории, и почему бы мне не попробовать вместо нее использовать Q? для некоторых обобщающих уравнений…» — писал Фейнман. И действительно, он доказал, что привычный подход можно было напрямую вывести теоретически, если производить вычисления в пространстве импульсов.
В то же время и Велтон, и Фейнман были озабочены своим здоровьем. Велтон по непонятным причинам мог внезапно заснуть прямо на стуле и во время летних каникул проходил курс лечения. Он спал днем, принимал минеральные ванны и получал дозы облучения ртутно-кварцевыми лампами. Фейнман после окончания второго курса испытывал что-то похожее на нервное истощение. Сначала ему рекомендовали постельный режим на все лето. «Если б мне такое сказали, я бы с ума сошел, — писал Велтон в их блокноте. — В любом случае, надеюсь, осенью к началу учебы ты поправишься. Не забывай, квантовую механику нам будет преподавать не кто-нибудь, а профессор Морс собственной персоной. Я жду не дождусь». («Я тоже», — ответил Ричард.)
Им страстно хотелось быть на переднем крае физики. Они начали читать Physical Review. (Фейнман обратил внимание на то, что удивительно большое количество статей прислали из Принстона.) Они надеялись восполнить пробелы в своих знаниях о новейших открытиях и двигаться дальше. Велтон работал над волновым тензорным исчислением, Фейнман пытался применить тензорное исчисление в электромеханике. И только когда потратили на это несколько месяцев, они начали понимать, что журналы — далеко не лучшие Baedekers[67]. Большинство работ утрачивали актуальность к тому моменту, как выходил номер, в котором они были опубликованы. Основную часть статей составляли переводы стандартных результатов на профессиональный язык. Новости иногда прорывались в Physical Review, хотя и с опозданием. Однако второкурсникам особенно и выбирать-то было не из чего, чтобы начать придираться.
Вторую часть курса теоретической физики преподавал Морс. Он не мог не заметить двух второкурсников, задававших осмысленные вопросы по квантовой механике. Осенью 1937 года они вместе со старшекурсниками посещали лекции Морса раз в неделю и начали пытаться вписывать свои неподтвержденные теории в контекст, привычный для физиков. Они, наконец, прочли «Принципы квантовой механики»[68] — библию Дирака, написанную в 1935 году. Морс поручил им рассчитывать характеристики различных атомов, используя разработанный им метод. Метод позволял рассчитывать энергии в зависимости от параметров уравнений, известных как радиальные функции водорода (Фейнман настаивал, что его следует именовать водородной функцией). Но при этом требовалось делать более точные, тщательно выполненные арифметические вычисления, чем те, с которыми они когда-либо сталкивались. К счастью, у них были калькуляторы. Не те старые, ручные развалюхи, а новые, электронные, которые могли не только складывать, умножать и вычитать, но и делить, пусть и не так быстро. Они вводили числовые значения, поворачивая металлический диск, а потом запускали электромотор и смотрели, как диск вращается и цифры на циферблате стремятся к нулю. Потом раздавался звонок, и его клацающий, динькающий звук часами отдавался в ушах.
В свободное время Фейнман и Велтон с помощью этого калькулятора зарабатывали деньги в агентстве национальной молодежной организации. Они рассчитывали параметры атомных решеток кристаллов для профессора, который хотел опубликовать справочные таблицы. Они даже разработали метод, который позволял производить вычисления быстрее. А когда решили, что довели свою систему до совершенства, то рассчитали, сколько времени займет вся работа. Получалось семь лет. Они убедили профессора отказаться от этого проекта.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОК