Чопорная деревня

We use cookies. Read the Privacy and Cookie Policy

Принстон славился своей аристократичностью. Университетские столовые, аллеи деревьев, каменные кладки и витражные окна, академические мантии за ужином и непременный обмен любезностями за чаем. Ни один другой колледж так не подчеркивал социальный статус своих выпускников как Принстон с его клубными традициями. Хотя XX век уже наложил свой отпечаток — количество выпускников выросло, а Нассау-стрит замостили, — Принстон в довоенные годы все же оставался таким, каким его с обожанием и поклонением описывал Скотт Фицджеральд — «неторопливым, привлекательным и аристократичным». Это был форпост между Нью-Йорком, Филадельфией и Югом. На его факультетах, очень профессиональных, все еще встречались фицджеральдовские «умеренно поэтичные джентльмены». Даже добродушный гений, прибывший в 1933 году и ставший самым знаменитым резидентом, не смог удержаться от насмешки. «Чопорная деревня тщедушных божков на ходулях», — описывал университет Эйнштейн.

Аспиранты, готовящиеся вступить на профессиональную стезю, были несколько отстранены от более праздных проявлений университетской жизни. Кафедра физики, в частности, развивалась в ногу со временем. Со стороны Фейнману казалось, что физики из Принстона составляли основную долю авторов научных журналов. Но даже несмотря на это, ему пришлось приспосабливаться к новому месту, которое, со своими внутренними дворами и множеством входящих в состав колледжей, походило на английские университеты даже больше, чем Гарвард и Йель. У здания аспирантуры, например, стоял «портье». Формальности, как обычно, пугали Фейнмана, но это продолжалось лишь до тех пор, пока он не начал понимать, что под академической мантией, которую нужно было носить обязательно, можно спрятать голые руки или пропитанную потом после игры в теннис спортивную форму. В день, когда он только приехал, осенью 1939 года, во время воскресного чаепития с деканом Эйзенхартом его несдержанные манеры стали настоящей проблемой. Он надел свой лучший костюм, вошел в дверь и увидел там худшее из того, что только мог вообразить, — молодых девушек. Он не знал, разрешалось ли ему присесть. И тут услышал голос позади:

— Вам чай со сливками или с лимоном?

Он обернулся и увидел жену декана, знаменитую светскую львицу Принстона. Поговаривали, что математик Карл Людвиг Зигель, вернувшись в Германию после года обучения в Принстоне, рассказывал друзьям: «Гитлер страшен, но миссис Эйзенхарт страшнее».

— И с тем, и с другим, — выпалил Фейнман.

— Хе-хе-хе-хе-хе, — последовал ответ, — Вы, конечно, шутите, мистер Фейнман!

Фраза, несомненно, означала, что собеседник допустил бестактность. Каждый раз, когда Ричард вспоминал этот случай, слова звенели у него в ушах: «Вы, конечно, шутите». Да, вписаться в этот мир было непросто. Фейнман переживал, что плащ, присланный родителями, был слишком короток. Он попробовал заниматься греблей — спортом, популярным в Лиге Плюща и казавшимся не таким пугающим, учитывая опыт Фар-Рокуэй. Он помнил то беззаботное время, когда они плавали по заливам южного побережья. Однако почти сразу Фейнман плюхнулся в воду, не удержавшись в слишком узкой лодке. Его беспокоил финансовый вопрос. Когда к Фейнману приходили гости, то приносили с собой рисовый пудинг, виноград, крекеры с арахисовым маслом или джемом и ананасовый сок. Фейнман, как и другие начинающие ассистенты, получал пятнадцать долларов в неделю. Обналичивая сберегательные сертификаты, чтобы оплатить счет в 265 долларов, он потратил двадцать минут, подсчитывая, какая их комбинация даст минимальные проценты. Разница составила восемь центов. Внешне Ричард оставался таким же импульсивным. Вскоре после его приезда товарищи по аспирантуре заключили, что Фейнман был на одной волне с Эйнштейном, которого к тому времени он еще не встречал. С восхищением они слушали его телефонные разговоры, полагая, что он беседует именно с этим великим человеком: «Да, я пробовал это <…> да, сделал <…> О, хорошо, проверю». Но чаще всего Ричард, конечно, говорил с Уилером.

Так как Фейнман был ассистентом Уилера, ему часто приходилось подменять преподавателя сначала на занятиях по механике, позже — по ядерной физике. И он вскоре понял, что выступать в аудитории, заполненной студентами, — часть выбранной им профессии. Фейнман и Уилер встречались каждую неделю, чтобы обсудить, как продвигаются исследования. Поначалу задачи ставил Уилер, потом они стали принимать решения вместе.

В первые четыре десятилетия XX века в физике был совершен невероятный прорыв. Теория относительности, квантовая теория, космические лучи, радиация, строение атомного ядра — те направления, к которым были обращены взгляды ведущих ученых. Такие классические разделы физики, как механика, термодинамика, гидродинамика и статическая механика, остались в стороне, и сообразительным аспирантам, открытым новым теориям, эти области представлялись наукой из учебников, уже ставшей частью истории или, в прикладном варианте, машиностроения. Физика была, как выразился ее летописец Абрахам Пайс[81], «обращена внутрь». Теоретиков интересовало строение ядра атома. Это направление стало приоритетным. Самое дорогостоящее экспериментальное оборудование: его стоимость могла достигать тысяч, а иногда и десятков тысяч долларов. Огромное потребление энергии. Непознанный мир новых веществ и «частиц» (это слово стало приобретать особое значение). Предлагаемые идеи казались странными и непонятными. Теория относительности, существенно повлиявшая на понимание космоса астрономами, практическое применение нашла в атомной физике, где ввиду того, что скорости частиц близки к скорости света, без релятивистской математики просто нельзя было обойтись. При проведении экспериментов использовались все более высокие мощности, что позволяло получать более значимые результаты. Благодаря квантовой механике физика утвердила свое превосходство над химией, которая до этого считалась самой фундаментальной наукой, так как объясняла основные законы природы.

Но в конце 1930-х — начале 1940-х годов физика элементарных частиц еще не считалась среди ученых приоритетным направлением. Так, в качестве темы ежегодной Вашингтонской конференции по физике в 1940 году организаторы рассматривали два варианта: «Элементарные частицы» и «Недра Земли» и выбрали в итоге второй. Но ни у Фейнмана, ни у Уилера не было сомнений в том, какое направление наиболее интересно и перспективно для теоретиков. Самым слабо развитым направлением фундаментальной физики в тот период была квантовая механика. Еще во время учебы в МТИ Фейнман прочел работу Дирака, опубликованную в 1935 году, в которой тот пришел к самому невероятному выводу: «Кажется, здесь нужны принципиально новые физические идеи». Дирак и другие первооткрыватели создали квантовую электродинамику — теорию взаимодействия электричества, магнетизма, света и материи — и развили ее настолько, насколько могли. Тем не менее теория оставалась незавершенной, и Дирак это хорошо знал.

Было непонятно, каким может быть электрон — фундаментальная частица с отрицательным зарядом. В тот период современное представление об электроне еще не вполне сформировалось, хотя в наше время многие школьники могут непосредственно на своих столах проводить эксперименты, которые демонстрируют, что электрический заряд дискретен, то есть заряд любого тела кратен заряду электрона. Но все же, что представляет собой электрон? Вильгельм Рентген, обнаруживший существование высокоэнергетических лучей, названных впоследствии его именем, запретил использовать это неожиданно получившее распространение слово в своих лабораториях еще в 1920 году. В трудах по квантовой механике ученые пытались описать заряд электрона, его массу, импульс, энергию или спин почти в каждом новом уравнении, однако хранили молчание по поводу самой его природы. Особенно остро стоял вопрос: был ли он частицей, имеющей конечные размеры, или бесконечно малой точкой? В модели атома Нильса Бора, уже устаревшей к тому моменту, предполагалось, что электроны, как миниатюрные планеты, вращаются вокруг ядра. Теперь же казалось, что электроны скорее являются гармоническими колебаниями. В некоторых формулировках электрон больше походил на волны, причем волна представляла собой распределение вероятностей их возникновения в конкретном месте в конкретное время. Но возникновение чего? Объекта, элемента, частицы?

Даже до появления квантовой механики классическое представление об электроне вызывало сомнения. Из уравнения, описывающего зависимость энергии (или массы) и заряда электрона и в которое входит еще один параметр — его радиус, следует, что с уменьшением размера электрона его энергия должна возрастать, подобно тому, как давление молотка, сосредоточенное в острие гвоздя, по которому он бьет, увеличивается до тысячи килограммов на квадратный сантиметр. Кроме того, если представлять электрон в виде крошечного шарика определенного размера, то возникает вопрос: почему он не разрушается под воздействием собственного заряда, какая сила удерживает его от этого? Оказалось, что физики манипулируют величиной, называемой «классический радиус электрона». Слово «классический» в данном контексте было своего рода прикрытием. Проблема заключалась в том, что при использовании альтернативного варианта, в котором электроны считаются бесконечно малыми точками, уравнения электродинамики не решаются: при делении на ноль получается бесконечность. Бесконечно маленькие гвозди, бесконечно сильные молотки.

В некотором смысле уравнения оценивали воздействие заряда электрона на самого себя, то есть его «собственную энергию». Это самовоздействие постепенно возрастало при приближении к центру электрона, но было непонятно, что будет, если в расчетах достичь центра электрона. Когда расстояние до центра становилось равным нулю, величина воздействия становилась равной бесконечности. Это казалось невозможным. Волновое уравнение квантовой механики только все усложняло. Чтобы избежать деления на ноль, которое во время учебы в школе вызывает ужас у учеников, физики задумались о создании уравнений, которые позволили бы выйти за пределы этих ограничений, ведь они суммировали бесконечное множество длин волн, бесконечное множество колебаний поля. Но даже тогда Фейнман не до конца понимал эту формулировку задачи, связанную с бесконечностью. Иногда, при решении достаточно простых задач, физикам удавалось получать разумные ответы, если они считали целесообразным отбрасывать те части уравнения, которые расходились с результатами. Как заметил Дирак в выводах к своей работе «Принципы квантовой механики», бесконечности в уравнении означали, что теория была фатально ошибочной. Появилось ощущение, что необходимы принципиально новые физические идеи.

Фейнман склонялся к решению настолько радикальному и простому, что его мог бы принять лишь человек, совершенно незнакомый с научной литературой. Он допустил (пока только для себя), что электроны вообще не могут воздействовать на себя. Такое предположение нуждалось в доказательстве и казалось довольно глупым. Однако, как он и ожидал, если исключить воздействие электрона на себя, то устранялось и воздействие поля как такового. Именно поле, представляющее собой суммарное воздействие зарядов всех электронов, и вызывало «самовоздействие». Заряд электрона оказывал влияние на поле, а поле, в свою очередь, воздействовало на электрон. Если предположить, что поля не существует, можно не учитывать его влияние на электроны. Тогда на каждый электрон будут оказывать влияние только другие электроны. Таким образом, будут осуществляться только непосредственные взаимодействия между зарядами. В этом случае в уравнении необходимо учесть задержку во времени, потому что, в какой бы форме это взаимодействие ни происходило, оно едва ли могло осуществляться со скоростью, превышающей скорость света. Взаимодействие было легким и осуществлялось в виде радиоволн, видимого света, рентгеновских лучей или любых других видов электромагнитного излучения. «Встряхни что-то одно, через какое-то время встряхнется и что-то другое, — сказал Фейнман позже. — Атомы на Солнце приходят в движение, а восемь минут спустя[82] начинают колебаться электроны в моих глазах. Это и есть прямое воздействие».

Никакого поля. Никакого самосогласованного действия. Следуя утверждению Фейнмана, законы природы были не столько открыты учеными, сколько умозрительно выведены. Впрочем, их смысл, переведенный на язык слов, несколько размывался. Фейнмана интересовал не столько сам факт воздействия электрона на самого себя, сколько возможность обоснованно отбросить эту концепцию. То есть не существование поля в природе, а возможность его существования в уме физика. Когда Эйнштейн провозгласил, что эфира не существует, он говорил, что отсутствует что-то реальное, или, по крайней мере, то, что должно было существовать, — представьте хирурга, который вскрыл грудную клетку и не обнаружил там пульсирующего сердца. С полем все было иначе. Оно было придумано, а не существовало в реальности. Английские ученые Майкл Фарадей и Джеймс Максвелл, которые ввели это понятие в XIX веке, полагая, что оно столь же необходимо, как хирургический скальпель, начали чуть ли не извиняться. Они не ожидали, что их слова воспримут буквально, когда писали о «силовых линиях», которые Фарадей наблюдал, разбрасывая металлические опилки вблизи магнита, или о «промежуточных шестернях»[83], псевдомеханических невидимых вихрях, которые, по представлениям Максвелла, заполняли пространство. Они заверяли своих читателей, что это были всего лишь аналогии, хотя и обоснованные математически.

Понятие поля было предложено не просто так. Оно давало возможность свести воедино свет и электромагнетизм и было не чем иным, как преобразованием одного в другое. Как и абстрактный приемник ныне не существующего эфира, поле идеально объясняло распространение волн, а энергия, казалось, действительно волнообразно пульсировала из его источников. Каждый экспериментатор, так же увлеченно изучающий электрические цепи и магниты, как Фарадей и Максвелл, мог почувствовать, как «вибрации» или «волновые движения» движутся циклически, подобно кручению колеса[84]. Но главное, поле позволяло объяснить, почему находящиеся на расстоянии объекты взаимодействуют друг с другом. В поле силы распространялись непрерывно, от одного места к другому. Никаких скачков, никакого волшебного подчинения непонятно откуда поступающим командам. Американский физик и философ Перси Бриджмен сказал: «Гораздо проще принять рациональный взгляд на то, что гравитация Солнца действует на Землю сквозь пространство, чем верить, что воздействующая сила «перескакивает» через разделяющее их расстояние и находит цель благодаря своей телеологической проницательности». К тому времени ученые уже забыли, что поле само по себе тоже несло налет магии: волнообразное нечто, которого не было, и пустое пространство, не вполне пустое и, строго говоря, не совсем пространство. Или, как позже сказал теоретик Стивен Вайнберг, «напряжение в мембране, но без самой мембраны». Понятие поля стало настолько привычным для физиков, что даже материя порой казалась им неким придатком, «точкой» этого поля, «пятном», или, как сказал Эйнштейн, тем местом, где поле было особенно интенсивно.

Принимать гипотезу поля или отрицать ее — так или иначе, к 1930 году это был уже вопрос метода, а не реальности. События 1926–1927 годов многое прояснили. Никто уже не был так наивен, чтобы сомневаться в существовании матриц Гейзенберга или волновых уравнений Шрёдингера. Это два разных взгляда на одни и те же процессы. В поисках новой теории Фейнман обратился к классическим представлениям о взаимодействии частиц. Ему пришлось столкнуться с волнообразным распространением энергии и обманчивым действием на расстоянии. В то же время Уилера заинтересовала абсолютно четкая концепция того, что электроны могут взаимодействовать напрямую, без участия поля.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК