Бесконечное количество пифагоровых троек
Бесконечное количество пифагоровых троек
Пифагорейцы своим страстным поиском истины с помощью доказательства вдохнули в математику живительную силу. Вести о достигнутых ими успехах распространились по всему Древнему Миру, хотя подробности своих открытий пифагорейцы хранили в строгой тайне. От желающих проникнуть в святилище знания не было отбоя, но только самые блестящие умы могли рассчитывать на прием в братство. Один из тех, кому ответили отказом, был кандидат по имени Силон. Он затаил обиду на унизительный отказ и спустя двадцать лет взял реванш.
Во время шестьдесят седьмой Олимпиады (510 год до н. э.) в соседнем городе Сибарисе произошло восстание. Телис, победоносный лидер восстания, начал варварскую кампанию преследования сторонников прежнего правительства, которая заставила многих из них искать убежища в Кротоне. Телис потребовал, чтобы предателей вернули в Сибарис, чтобы те понесли наказание, но по призыву Мило и Пифагора жители Кротона выступили против тирана в защиту беглецов. Телис пришел в ярость и, быстро собрав армию численностью в 300000 воинов, пошел маршем на Кротон, оборону которого возглавил Мило, собравший под своим началом 100000 вооруженных жителей города. На семидесятый день войны защитники Кротона под предводительством Мило одержали победу. В качестве возмездия Мило приказал повернуть воды реки Кратис так, чтобы они затопили Сибарис и разрушили город.
Война окончилась, но Кротон бурлил: жители спорили о том, как по справедливости разделить военные трофеи. Опасаясь, что земли достанутся пифагорейской элите, рядовые жители Кротона начали ворчать. Недовольство все более возрастало, так как пифагорейское братство продолжало удерживать в тайне свои открытия, но никаких действий жители Кротона не предпринимали до тех пор, пока в дело не вмешался Силон. Сыграв на страхах, умопомешательстве и зависти толпы, Силон возглавил ее и повел, чтобы разрушить самую блестящую математическую школу, которую когда-либо знал мир. Дом Мило и соседняя школа были окружены. Все двери были закрыты и забаррикадированы, чтобы те, кто находились внутри, не могли спастись, а затем оба здания были подожжены. Мило сумел вырваться из ада и убежать, а Пифагор вместе со своими многочисленными учениками был убит.
Математика потеряла своего первого героя, но пифагорейский дух не был сокрушен. Числа и математические истины бессмертны. Пифагор показал, что математика в большей степени, чем какая-нибудь другая научная дисциплина, лишена субъективности. Его ученикам и последователям не был нужен учитель, чтобы решить, верна ли та или иная теория. Истинность математической теории не зависит от чьего бы то ни было мнения. Арбитром вместо мнения стала логичность математической конструкции. Величайшим вкладом Пифагора в цивилизацию стал способ достижения истины, не подвластный ошибочности человеческого суждения. После нападения Силона и смерти своего отца-основателя, пифагорейцы покинули Кротон и разбрелись по другим городам Древней Греции.
Но преследования продолжались, и в конце концов многие пифагорейцы были вынуждены поселиться на чужбине. Вынужденная эмиграция способствовала тому, что пифагорейцы распространили свое математическое учение по всему Древнему Миру. Ученики и последователи Пифагора основали новые школы и обучили своих учеников методу логического доказательства. Помимо известного им доказательства теоремы Пифагора они поведали миру секрет нахождения так называемых пифагоровых троек.
Пифагоровы тройки представляют собой комбинации из трех целых чисел, удовлетворяющих соотношению Пифагора x2 + y2 = z2. Например, соотношение Пифагора выполняется при x=3, y=4 и z=5:
З2 + 42 = 52, 9 + 16 = 25
Другой способ получения пифагоровых троек — перестройка квадратов. Если взять квадрат 3?3, состоящий из 9 квадратных плиток, и квадрат 4?4, состоящий из 16 плиток, то все эти плитки можно расположить по-новому, так, чтобы они образовывали квадрат 5?5, состоящий из 25 плиток (рис. 4).
+
=
З2 + 42 = 52
9 + 16 = 25
Рис. 4
Пифагорейцы мечтали найти и другие пифагорейские тройки, другие квадраты, из которых можно было бы сложить третий квадрат больших размеров. Еще одна пифагорова тройка: x=5, y=12 и z=13:
52 + 122 = 132, 15 + 144 = 169.
Приведем пифагорову тройку из больших чисел: x=99, y=4900 и z=4901. По мере того, как числа возрастают, пифагоровы тройки встречаются все реже и находить их становится все труднее и труднее. Пифагорейцы изобрели метод отыскания таких троек и, пользуясь им, доказали, что пифагоровых троек существует бесконечно много.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Приложение 5. Доказательство Евклида существования бесконечного числа пифагоровых троек
Приложение 5. Доказательство Евклида существования бесконечного числа пифагоровых троек Пифагоровой тройкой называется такой набор из трех целых чисел, что сумма квадратов двух из них равна квадрату третьего числа. Евклид сумел доказать, что существует бесконечно
Бесконечное путешествие
Бесконечное путешествие Почти все свои деньги я тратила не на меха и бриллианты, не на дорогую мебель, а на путешествия. Зато у меня почти не было сбережений. И Рапопорт был такой же. Когда он умер, у него на книжке оказалось 39 тысяч, а памятник, который я ему поставила, стоил
Бесконечное бегство
Бесконечное бегство Жизнь шла своим чередом: первая волна погромов прошла, однако в любой момент расправы могли возобновиться. Красная армия готовилась перейти в наступление. Эренбург и Люба при первой же возможности покинули Киев и отправились в Крым, в Коктебель к
Как учил товарищ Сталин: количество всегда переходит в качество – диалектически
Как учил товарищ Сталин: количество всегда переходит в качество – диалектически Сталин ждал возвращения делегации и тотчас по приезде ее, прочитав отчет, он вновь вернулся к вопросу: сколько боевых самолетов в день может выпускать германская промышленность? Этот вопрос
Количество выданных из Казачьего Стана
Количество выданных из Казачьего Стана Я посетил последний раз Казачий Стан после прибытия его из Белоруссии в Италию, в район города Джемоны, в конце сентября 1944 года, то есть за восемь месяцев до трагической выдачи его населения в Австрии, на берегах реки Дравы.Тогда я
Глава 17 «Глубокое и бесконечное мучение»
Глава 17 «Глубокое и бесконечное мучение» Черчилль вернулся в Лондон 7 мая 1916 г.; он покинул окопы навсегда. Но возвращение не сулило никаких перспектив работы в правительстве. Через два дня после приезда он говорил в палате общин о необходимости увеличения
9. И качество и количество
9. И качество и количество Как-то в конце сороковых годов один из аспирантов спросил Чудакова:— Скажите откровенно, Евгений Алексеевич, вам никогда не хотелось с автомобильной тематики переключиться на более романтическую? Скажем, на корабельную или