* * *
Убежденный сторонник теории Нильса Бора, невысокий сероглазый двадцативосьмилетний доцент по имени Джон Арчибальд Уилер приехал в Принстонский университет в 1938 году, на год раньше Фейнмана. У него были такие же, как у Бора, закругленные брови, мягкие черты лица и та же манера, разговаривая о физике, вкладывать в свои слова загадочный скрытый смысл. В последующие годы ни одному физику не удалось превзойти Уилера ни в его отношении к непознанному, ни в умении двусмысленно высказываться.
Черные дыры не имеют волос. Это сказал именно он. Фактически ему принадлежит и сам термин «черная дыра».
Нет никакого закона, кроме закона, утверждающего, что нет никакого закона.
Я хожу на двух ногах, и одна из них всегда догоняет другую.
В любой области ищите самое странное и исследуйте это.
Отдельные события. События, не подчиняющиеся законам. События столь многочисленные и столь нарочито разрозненные, с подчеркнутой спонтанностью, при этом все же приобретающие устойчивый облик.
Он одевался как бизнесмен. Галстук всегда туго завязан, манжеты накрахмалены. У него была привычка во время беседы со студентами непринужденно доставать карманные часы, доходчиво намекая, что потратит на них только отведенное им время. Его коллега по Принстону Роберт Уилсон полагал, что за фасадом джентльмена Уилер скрывает еще более безупречного джентльмена, за которым прячется еще более безупречный, и так далее. «Однако, — добавлял Уилсон, — где-то между этими джентльменами затаился тигр, дерзкий разбойник <…> у которого хватает смелости браться за любую, самую сумасшедшую задачу». Лекции Уилер читал очень уверенно, производя впечатление на аудиторию простым изложением и провокационными схемами. В детстве он тщательно изучил книгу под названием Ingenious Mechanisms and Mechanical Devices («Хитрые механизмы и механические устройства»). Он сам конструировал арифмометры и автоматические пистолеты, в которых все детали и рычаги были вырезаны из дерева. Его иллюстрации к самым непонятным квантовым парадоксам, которые он набрасывал на грифельной доске, были столь остроумны и отточены, что казалось, будто весь мир представляет собой не что иное, как удивительный ясный механизм. Сын библиотекарей и племянник горняков, Уилер вырос в Огайо, окончил колледж в Балтиморе, получил степень в Университете Джона Хопкинса. А потом он выиграл стипендию Национального научно-исследовательского совета, что в результате и привело его в 1934 году в Копенгаген. Он отправился туда на грузовом судне, чтобы учиться у Нильса Бора, заплатив за билет пятьдесят пять долларов.
В начале 1939 года Уилер и Бор снова будут работать вместе, на этот раз уже как коллеги. Принстон, чтобы развивать новое направление — ядерную физику, пригласил не только Уилера, но и известного венгерского ученого Юджина Вигнера. МТИ же оставался довольно консервативным учреждением и не спешил бежать впереди паровоза. Слейтер и Комптон придерживались сложившихся представлений о физике и тяготели к развитию на факультете практичных направлений. В Принстоне все было иначе. Уилер все еще помнил то непередаваемое чувство, которое испытал, впервые наблюдая за процессом радиоактивного излучения. Он помнил, как сидел в темной комнате, уставившись в черный экран из сульфата цинка, и подсчитывал периодические вспышки альфа-частиц, испускаемых радоновым источником. Бор к тому времени уже покинул неспокойную Европу, чтобы посетить институт Эйнштейна в Принстоне. Уилер, встречавший Бора, прибывшего в Нью-Йорк на корабле, узнал от него о том, какое пристальное внимание уделяют изучению атомов урана в Европе.
По сравнению с атомом водорода, с изучения ядра которого Бор начал свою квантовую революцию, атом урана был просто монстром. Самый тяжелый, состоящий из 92 протонов и более чем 140 нейтронов атом[78], редко встречающийся в природе (всего один на семнадцать триллионов атомов водорода), нестабильный, предрасположенный к внезапному распаду на более легкие элементы или — а это были экстраординарные новости, и именно над этим вопросом Бор работал во время своего путешествия через Атлантику, — расщеплению при столкновении с нейтроном на свободные пары более легких атомов бария и криптона или теллура и циркония с высвобождением новых нейтронов и энергии. Как можно было представить эти ядра? Как скопления твердых частиц, скользящих друг на друге? Как гроздья винограда, перемотанные плотной резинкой? Или как «жидкие капли», представлявшие собой мерцающие, отталкивающиеся, постоянно колеблющиеся шаровидные частицы, сжимающиеся в форму песочных часов и растрескивающиеся в их тонкой части? Формулировка «жидкие капли» распространилась, словно вирус, в среде физиков в 1939 году. Именно эта «жидкокапельная» модель позволила Уилеру и Бору сделать одно из самых невероятных и величайших упрощений в науке — выстроить теорию феномена, который позже назовут расщеплением ядра. Сам термин не принадлежал Уилеру и Бору. Они весь вечер пытались придумать вариант получше, что-то вроде раскола или деления, но в конце концов сдались, так и не найдя нужного слова.
Разумно было предположить, что модель жидких капель лишь весьма приближенно описывает скопления частиц в ядре атома, состоящего из более чем двухсот частиц, удерживаемых вместе ядерными силами, действующими на близких расстояниях и отличающимися по своей природе от действующих в молекулах электрических сил, которые изучал Фейнман. Для атомов меньшего размера метафору «жидкие капли» использовать было нельзя, но для описания крупных, таких как атомы урана, она работала. Форма ядра атома, как и форма жидкой капли, зависела от тонкого баланса между двумя противоположными силами. Силы ядерного притяжения (так называемое сильное взаимодействие) в атоме подчиняются тому же принципу, благодаря которому за счет поверхностного натяжения удерживается компактная геометрическая форма капли. Этому притяжению противостоит электрическая сила отталкивания (согласно закону Кулона), действующая между положительно заряженными протонами. Бор и Уилер поняли, насколько важно облучать именно медленными нейтронами, которые Ферми счел совершенно бесполезными, когда работал в своей лаборатории в Риме[79], и сделали два громких заявления. Во-первых, к взрыву приведет ядерный распад только редкого изотопа[80] урана — урана-235. Во-вторых, бомбардировка нейтронами также приведет и к ядерному распаду и образованию нового вещества с атомным номером (зарядом) 94 и массой 239, не существующего в природе и пока не полученного в лаборатории. На основе этих двух теоретических утверждений вскоре начал развиваться огромный, невиданный ранее технологический проект.
Одна за другой открывались лаборатории ядерной физики. Американский дух изобретательства был теперь направлен на то, чтобы разработать аппарат, позволяющий ускорять пучки заряженных частиц, сталкивать их с атомами металлов или газов и отслеживать частицы, образующиеся в результате их столкновений, используя камеры с ионизированным газом. Один из первых в стране «циклотронов» — такое название этот аппарат получит в будущем — появился именно в Принстоне в 1936 году. Его стоимость была такой же, как и стоимость нескольких автомобилей. В университете имелись и ускорители меньшего размера, которые работали каждый день, что позволяло получать редкие элементы и изотопы и накапливать новые знания. Когда так мало известно, результаты почти каждого эксперимента приобретают особую значимость.
Полученные на новом мощном оборудовании данные становилось все труднее оценивать и интерпретировать. Ранней осенью 1939 года студент по имени Хайнц Баршалл обратился к Уилеру с типичной проблемой. Как и большинство новоиспеченных практиков, Баршалл использовал ускоритель заряженных частиц, чтобы измерить их энергию. Внутри ионизированной камеры происходило рассеяние частиц, и ему надо было оценить зависимость энергии частиц от угла столкновения. Баршалл понял, что эксперимент не будет чистым, так как сама камера будет вносить искажения. Проблема заключалась в том, что некоторые частицы могли начать ускоряться вне камеры, другие — уже в ее цилиндрических стенках, и, следовательно, зафиксированная энергия не будет соответствовать ее истинному значению. Необходимо было найти способ, позволяющий полученное с помощью расчетов значение энергии привести в соответствие энергии реальной. Это была задача, для решения которой требовалось выполнять громоздкие вычисления вероятностей в сложной геометрии. Баршалл понятия не имел, с чего начать. Уилер же ответил, что он сам слишком занят, чтобы вникать, и посоветовал обратиться к новому очень сообразительному аспиранту.
Баршалл послушно разыскал Дика Фейнмана в здании колледжа. Фейнман выслушал его, но ничего не ответил. Баршалл решил, что пришел конец его научной работе. Ричард же только начинал привыкать к этому новому миру, который ему как физику казался гораздо меньше, чем тот научный центр, который он недавно покинул. Он покупал все необходимое в магазине на Нассау-стрит в западной части студенческого городка. Там его и заметил студент магистратуры Леонард Эйзенбад. «Похоже, ты намереваешься стать неплохим физиком-теоретиком, — сказал Эйзенбад, указывая на купленную Фейнманом корзину для мусора и тряпку для стирания мела с доски. — Все, что нужно, у тебя уже есть». В следующий раз, когда Баршалл встретился с Фейнманом, его удивила охапка исписанных листов, которую тот держал в руках. Ричард успел написать решение его задачи, пока был в дороге. Баршалл был впечатлен и стал еще одним молодым физиком в разрастающейся группе единомышленников, способных в полной мере по достоинству оценить способности Фейнмана.
Уилер тоже обратил внимание на Фейнмана, назначенного по непонятным им обоим причинам его ассистентом, так как изначально предполагалось, что Фейнман будет работать с Вигнером. При первой встрече Ричард был удивлен молодостью профессора: тот был чуть старше его самого. Потом он был ничуть не меньше удивлен манерой Уилера сверяться со своими карманными часами. Он понял намек и во время следующей встречи тоже достал из кармана часы, купленные за доллар, и показал их Уилеру. Повисла пауза, после чего оба рассмеялись.