Все его знания
Фейнмана по-прежнему занимали простые вопросы. Большую часть своей жизни он пытался постичь устройство мира, понять, как атомы и силы, соединяясь, образуют кристаллы льда и радугу. Создавая в своем воображении мир микроскопических машин, он продолжал исследовать процессы, происходящие на уровне долгоживущих молекул, а не эфемерных странных частиц. Он стал частью сообщества физиков-теоретиков, принял их цели и риторику и все же сообщил Американскому физическому обществу, что миниатюризация не имеет ничего общего с фундаментальной физикой («Что такое вообще эти странные частицы?»). Но в сообществе интеллектуальное превосходство негласно признавалось за теми, кто изучал феномены, возникающие в результате столкновения частиц и наблюдаемые лишь кратчайшую долю секунды. Фейнман же давал понятию другое определение. «То, о чем мы говорим, реально, и оно прямо перед нами: это природа», — писал он одному индийскому корреспонденту, который, по его мнению, начитался литературы о «необъяснимых феноменах».
«Учитесь, пытайтесь постичь суть простых вещей и законов, лежащих в основе всего. Почему облака не падают, почему днем не видно звезд, почему масляная пленка разноцветная, как образуются линии на поверхности водяной струи, льющейся из кувшина, почему раскачивается лампа — все эти бесчисленные явления мы наблюдаем в окружающем мире. Когда найдете им объяснение, можете перейти к другим, более тонким вопросам».
Первой ступенью для любого студента Калтеха был двухлетний обязательный курс базовой физики, но к началу 1960-х годов его программа безнадежно устарела. Со всей страны в университет прибывали блестящие молодые первокурсники, которые только что окончили школу и были готовы вгрызаться в тайны теории относительности и странных частиц, а их заставляли изучать, по выражению Фейнмана, «движение пробкового мяча по наклонной плоскости». Главного преподавателя на факультете не было; лекции читали аспиранты, поделив их между собой. В 1961 году администрация Калтеха решила полностью переработать курс; Фейнмана попросили читать его дважды в неделю в течение первого года.
С проблемой устаревших программ столкнулись не только в Калтехе и не только в рамках базового курса физики. Современная наука менялась слишком стремительно, а вот вузовская программа, напротив, костенела. Не осталось никого, кто мог бы вывести студентов бакалавриата на горячую передовую современной физики и биологии. Но если квантовую механику и молекулярную генетику еще как-то можно было интегрировать в программу высшего образования, то наука «до Эйнштейна» грозила превратиться в предмет исторический. Для многих первокурсников освоение физики начиналось с истории: они изучали физическую науку Древней Греции; египетские пирамиды и шумерские календари; развитие физики в Средние века и в XIX веке. Почти все курсы начинались с механики в том или ином виде. Вот как выглядела типичная программа:
1. Историческое развитие физической науки.
2. Современное состояние физической науки.
3. Кинематика: наука о движении.
4. Законы динамики.
5. Применение законов движения: движущая сила и энергия.
6. Упругость и простое гармоническое движение.
7. Динамика абсолютно твердого тела.
8. Статика абсолютно твердого тела.
И так далее, и тому подобное, пока наконец в самые последние недели курса не начиналось изучение атомов и молекул, которое шло в этом списке под номером 26. После этого оставалось совсем немного времени, чтобы слегка затронуть ядерную физику и астрофизику. В Калтехе по-прежнему был в ходу древний учебник, написанный местным светилом Робертом Милликеном — труд, по уши увязший в физике XVIII–XIX веков.
Фейнман же начал свой курс с атомов. Потому что именно они были основой его понимания мира — не мира квантовой механики, а обычного мира парящих облаков и масляной пленки на воде, переливающейся разными цветами. Осенью 1961 года почти двести первокурсников вошли в аудиторию, и первое, что они услышали, был вопрос, заданный улыбающимся лектором, меряющим шагами кафедру:
— Так как же мы представляем мир? Предположим, что в результате некоего катаклизма будут уничтожены все научные знания и нужно передать следующему поколению лишь одну фразу, в которой содержалось бы максимум информации и минимум слов. Что это была бы за фраза? Мне кажется, в ней должна содержаться атомная гипотеза (или, если угодно, не гипотеза, а факт): всё в мире состоит из атомов, мельчайших частиц, находящихся в постоянном движении и притягивающих друг друга на небольшом расстоянии, но отталкивающихся при столкновении. В одном этом высказывании заключен огромный объем информации о мире, если немного поразмыслить и включить воображение.
Он предложил студентам представить каплю воды и совершить путешествие по шкале размеров: увеличить каплю до двенадцати метров в сечении, потом до двадцати четырех километров, а потом еще в двести пятьдесят раз, пока на горизонте не забрезжат движущиеся молекулы, каждая из которых состоит из двух атомов водорода, похожих на пухлые ручки, торчащие из большого «туловища» — атома кислорода. Фейнман охарактеризовал противоборствующие силы, удерживающие и отталкивающие молекулы. Представил жар в виде движущихся атомов; рассказал о давлении, расширении, превращении в пар. Описал лед и его молекулы — твердую кристаллическую решетку; поверхность воды, поглощающую кислород и азот и выделяющую пар. Вслед за этим тут же возникли вопросы о равновесии и дисбалансе. Вместо того чтобы говорить об Аристотеле и Галилее, объяснять устройство рычага и физику метаемого тела, он создал осязаемую картину мира, в котором все субстанции состоят из атомов, рассказал, как возникают эти субстанции и почему они ведут себя так, а не иначе. Растворение и осадки, огонь и запах — Фейнман шагал по кафедре, показывая атомную гипотезу не как конечный пункт, редуктивный тупик, а как начало пути, ведущего к более сложным материям.
— Если вода — а она вся состоит из этих маленьких капель, все километры воды на Земле — может образовывать волны и пениться, шуметь и течь по асфальту, описывая странную траекторию; если все это, все потоки воды состоят из атомов, представляете, сколько всего еще возможно? И возможно ли, что этот «объект», который ходит сейчас перед вами и о чем-то рассказывает, тоже представляет собой нагромождение атомов, только организованных более сложным образом? Говоря о себе как о скоплении атомов, мы, конечно же имеем в виду не беспорядочную кучу, а определенное сочетание частиц, имеющее уникальный рисунок, который не повторяется от одного человека к другому, хотя этот другой, вероятно, обладает теми же способностями, как и тот, кого вы видите в зеркале.
Фейнман вдруг обнаружил, что загружен работой; он не работал так много со времен Манхэттенского проекта. Его занимало не только преподавание. Он понял, что хочет структурировать огромный объем физических знаний, и структурировать его по-новому, перевернув с ног на голову, пока не найдет взаимосвязи — «хвосты», которые раньше никто не увязывал между собой. Он даже попытался нарисовать карту, представляя свои исследования в виде диаграммы, и назвал ее «Путеводитель по непонятному».
Команда профессоров и аспирантов из Калтеха с грехом пополам старалась за ним угнаться: неделями они сочиняли задачи и собирали дополнительные материалы, и его «Путеводитель» постепенно обретал очертания. После лекций они встречались за обедом и пытались собрать воедино то, что Фейнман извлекал из одного-единственного листка с загадочными набросками. Он говорил о физике языком простого мечтателя и уделял основное внимание идеям, а не методологии, однако мысль его развивалась столь стремительно, что коллегам-физикам было сложно поспевать за ее ходом.
Любой базовый курс включал историю предмета, и курс Фейнмана не был исключением. Но вместо того чтобы углубляться в повествование о шумерах и древних греках, Фейнман посвятил вторую лекцию «физике до 1920 года». На эту тему у него ушло меньше получаса, после чего он перешел к краткому обзору квантовой физики, ядер и странных частиц по Гелл-Манну и Нисидзиме. Многие студенты пришли в Калтех именно за этим. Но Фейнман не хотел, чтобы у них создалось впечатление, будто именно здесь, на уровне микроскопических частиц, кроются фундаментальные законы и глубочайшие нераскрытые тайны.
Перейдя искусственную границу между научными дисциплинами, он заговорил о другой проблеме — и это было «не обнаружение новых элементарных частиц, а кое-что, оставшееся нерешенным с давних пор». Речь шла об анализе турбулентных жидкостей. В наблюдениях за эволюцией звезды наступает момент, когда можно определить начало конвекции; после этого поведение звезды становится непредсказуемым. Мы также не можем анализировать погоду. Нам неизвестна закономерность процессов, происходящих внутри Земли. Никто не может объяснить этот хаос с точки зрения первых принципов атомных сил или законов течения жидкости. Течение обычной жидкости разобрано в учебнике, сказал он первокурсникам. Но мы до сих пор не знаем, как описать поток воды, текущей по трубе. Вот главная проблема, которую еще предстоит решить.
Каждая его лекция представляла собой совершенное театральное представление. В отличие от других преподавателей, Фейнман никогда не обрывал тему на середине: «Похоже, нам пора заканчивать. Продолжим эту дискуссию в следующий раз…» Он так четко просчитывал, сколько времени понадобится на заполнение диаграммами и уравнениями двухъярусной раздвижной доски, что, казалось, заранее представлял, как она будет выглядеть в конце занятия. Он выбирал обширнейшие темы, широко раскинувшие свои щупальца и затрагивающие самые разные сферы научного знания: сохранение энергии, время и расстояние, вероятность. Уже в конце первого месяца он перешел к глубокой и насущной проблеме симметрии в законах физики. Его подход к сохранению энергии позволял взглянуть на многие проблемы совсем под другим углом. Физики-теоретики, занимающиеся исследованиями, постоянно помнили об этом принципе, но в учебниках он упоминался вскользь, в конце главы о механической энергии или термодинамике. При этом сперва указывалось, что механическая энергия не сохраняется, так как трение неизбежно приводит к ее потере. Полноценное описание принципа встречалось лишь тогда, когда речь заходила об эквивалентности материи и энергии у Эйнштейна.
А Фейнман выбрал сохранение энергии отправной точкой разговора о законах сохранения вообще (и в результате в программе его курса понятия «сохранение заряда», «барионы» и «лептоны» вводились за несколько недель до изучения тем, посвященных скорости, расстоянию и ускорению). Он предложил гениальную аналогию. Представьте ребенка, у которого есть двадцать восемь кубиков, сказал он. В конце каждого дня мать их пересчитывает. И выявляет фундаментальный закон — закон сохранения кубиков: их всегда двадцать восемь.
Однажды она обнаруживает, что кубиков двадцать семь, но при внимательном осмотре выясняется, что один завалился под ковер. На другой день она насчитывает лишь двадцать шесть кубиков, но, подойдя к открытому окну, видит, что недостающие два валяются на улице. На третий день оказывается, что кубиков двадцать пять. В комнате стоит коробка; взвесив коробку и кубик, мать приходит к выводу, что три кубика находятся внутри. Так продолжается долгое время. Кубики исчезают в ванной под водой, и матери приходится применять все более сложные вычисления, чтобы определить их количество по уровню поднявшейся воды. «Ее мир постепенно усложняется, — объяснял Фейнман, — ей приходится вводить целый ряд понятий, которые помогают подсчитать, сколько кубиков находится там, где их не видно». Между энергией и кубиками есть одно различие, предупредил он: энергия — это набор абстрактных формул, которые с каждым шагом становятся все запутаннее. Но суть одна: в конечном итоге физик всегда должен вернуться к тому, с чего начал.
Живые аналогии и обширные темы неизбежно влекли за собой расчеты. На той же часовой лекции по сохранению энергии Фейнман заставил студентов высчитывать потенциальную и кинетическую энергию в гравитационном поле. Через неделю, знакомя их с принципом неопределенности в квантовой механике, он не только сумел передать всю драматичность этого неотъемлемого свойства всех природных явлений, но и рассчитал плотность вероятности атома водорода в состоянии покоя. При этом он по-прежнему не касался таких базовых понятий, как скорость, расстояние и ускорение.
Неудивительно, что коллеги Фейнмана занервничали, столкнувшись с необходимостью писать задачи и упражнения для его курса. Еще до окончания первого полугодия он разъяснил студентам сложнейшую геометрию пространства и времени в теории относительности вкупе с диаграммами движения частиц, геометрическими преобразованиями и четырехвекторной алгеброй. Это был очень сложный материал для первокурсников. А ведь Фейнман пытался не только научить их математике, но и показать, как он применяет свой метод визуализации, объяснить механизмы работы своего мозга на примере составления диаграмм, заставить студентов наглядно представить кажущуюся ширину и глубину объекта. Он увлекал их в свое Зазеркалье.
«Все зависит от того, каким образом мы воспринимаем объекты; когда мы перемещаемся, наш мозг тут же пересчитывает их ширину и глубину. Но если мы движемся с высокой скоростью, то не можем мгновенно вычислить координаты и время: люди никогда не передвигались со скоростью света, а следовательно, они не в состоянии осознать природу времени и пространства».
Порой студенты приходили в ужас. Фейнман, однако, периодически возвращался к стандартным темам из вводного курса физики. Опытные ученые, присутствовавшие на его лекциях, понимали, что, рассказывая о центре тяжести и вращающемся гироскопе, он дает студентам не только математический метод, но и физическое понимание сути этих явлений. Почему волчок, удерживающийся в вертикальном положении на кончике пальца, начинает медленно кружиться под действием гравитации, тянущей его ось вниз? Даже бывалым физикам казалось, что они впервые слышат ответы на свои «почему», когда Фейнман говорил о гироскопе, который всегда немного «падает», прежде чем начать вращаться… (Он не хотел, чтобы у студентов возникло впечатление, что гироскоп — это чудо: «Это чудесная штука, но никак не чудо».)
В науке для него не было запретных сфер. Проконсультировавшись с экспертами из других областей, он прочел две лекции о физиологии глаза и физико-химических свойствах цветного зрения, указав на глубокую взаимосвязь физики и психологии. Описал точку зрения на время и поля, вытекающую из его дипломной работы с Уилером и понятий запаздывающего и опережающего потенциалов. В отдельной лекции раскрыл принцип наименьшего действия, начав с воспоминаний о своем школьном учителе мистере Бадере — откуда мяч знает, в какую сторону лететь? — и закончив принципом Гамильтона в квантовой механике. Другую лекцию посвятил храповику и собачке — простейшему зубчатому механизму, который препятствует разматыванию часовой пружины; на самом же деле это был урок обратимости и необратимости, беспорядка и энтропии. За один час он увязал макроскопическое действие этого механизма с процессами, происходящими на уровне составляющих его атомов. И показал, что история храповика — это термодинамическая история Вселенной:
«Храповик и собачка вращаются лишь в одном направлении, так как между ними и остальной Вселенной существует глубинная связь… Поскольку от Земли идет холод, а от Солнца — тепло, храповик и собачка, изготовленные человеком, могут крутиться лишь в одну сторону… Нам не понять суть этого явления, пока мы не приблизимся к разгадке тайны зарождения Вселенной не с точки зрения досужих разговоров, а с точки зрения научного знания».
Этот курс стал педагогическим достижением; еще до его окончания он приобрел широкую известность в научном сообществе. Но он не предназначался для первокурсников. Шли месяцы, и результаты экзаменов потрясли и разочаровали Фейнмана. Тем не менее в конце года администрация стала умолять его продолжить курс и преподавать тому же потоку студентов, теперь уже второкурсников. Он согласился и на этот раз попытался прочесть им всеобъемлющий курс квантовой механики, снова опрокинув привычный порядок. Пройдет много лет, и Дэвид Гудстейн, другой физик Калтеха, будет рассказывать: «Недавно я разговаривал с его бывшими студентами… Хотя другие воспоминания о том времени у многих стерлись, все как один признались, что два года на курсе у Фейнмана стали для них уникальным опытом, который бывает раз в жизни». Однако в 1960-е ситуация свидетельствовала об обратном: к окончанию курса посещаемость сильно упала. В то же время на лекции стали приходить преподаватели и аспиранты, поэтому аудитория всегда оставалась полной; Фейнман, вероятно, не догадывался, что теряет слушателей, для которых все это и затевалось…
Таков был мир по Фейнману. Со времен Ньютона ни одному ученому не удавалось представить столь полную, амбициозную и неортодоксальную картину знаний о мире — как собственных, так и наработанных научным сообществом. После тщательной обработки (главными редакторами выступили физики Роберт Лейтон и Мэтью Сэндс) лекции вышли в виде трехтомника «Фейнмановские лекции по физике» — знаменитых «красных книг». В колледжах и университетах их поначалу пытались использовать как учебники, но вскоре отказались от этой идеи в пользу более структурированной и менее радикальной альтернативы. Вместе с тем, в отличие от «настоящих» учебников, фейнмановские лекции продолжали продаваться и поколение спустя.
На обложке трехтомника смеющийся Фейнман в рубашке играл на барабанах. Впоследствии он жалел, что выбрали именно эту фотографию. «Странно, но в тех редких случаях, когда меня приглашают сыграть на барабанах на каком-нибудь официальном приеме, хозяева никогда не упоминают о том, что я физик-теоретик. Видимо, все дело в том, что искусство вызывает у людей большее уважение, чем наука», — заметил он после того, как на одном из таких приемов его представили как барабанщика. И когда шведское издательство обратилось к нему с просьбой прислать копию этой фотографии для энциклопедии («Хотелось бы показать, что у такой сложной сферы, как теоретическая физика, человеческое лицо…»), он взорвался. «Дорогие издатели, — написал он в ответ, — тот факт, что я играю на барабанах, не имеет никакого отношения к моим исследованиям в области теоретической физики. Открытия этой науки являются одним из высочайших достижений человечества, поэтому я считаю оскорбительным постоянную потребность издателей доказывать, что физик — тоже человек, демонстрируя, что он, как все, занимается обычными делами (например, игрой на барабанах).
Да, я обычный человек, и поэтому говорю вам: идите к черту».