Кварки и партоны

В 1983 году, вспоминая, какой путь проделала физика частиц со времен вошедшей в историю конференции на Шелтер-Айленде, Мюррей Гелл-Манн сказал, что он и его коллеги вывели теорию, которая оказалась «эффективной». С этим было не поспорить. Он подытожил многолетние исследования одной изящной фразой (гораздо более элегантной, чем фейнмановское «все в мире сделано из атомов»):

«Разумеется, речь идет о теории Янга — Миллса, основанной на цветной группе SU(3) и электрослабой группе SU(2) U(1) с тремя семьями лептонов и кварков с полуцелым спином, их античастиц и бесспиновых бозонов Хиггса, сгруппированных дублетами и антидублетами со слабым изотопическим спином, расщепляющим электрослабую группу до электромагнитной группы U1».

Слушатели сразу узнали типичного Гелл-Манна: все, что следовало за словом «разумеется», было характерно для присущей лишь ему манеры изъясняться. Поклонники находили поэтичным его жаргон, который он по большей части придумал сам. Гелл-Манн по-прежнему увлекался лингвистикой. Весь следующий час он, как и всегда, перемежал научные рассуждения потоком заумных каламбуров и шуток о номенклатурных названиях и именах: «Кстати, некоторые называют хигглет иначе (показывает коробку стирального порошка “Аксион”[160]), а следовательно, вы легко найдете его в любом супермаркете»; «В Греции много физиков: Димопулос, Нанопулос, Илиопулос, и, чтобы не обидеть наших французских друзей, нельзя не упомянуть Растапопулоса[161]»; «О’Раферти (это упрощенное написание его имени; на самом деле вместо ф положено писать тхбх)»; и так далее.

Некоторых раздражала его манера (особенно тех, чьи имена он анализировал на предмет произношения), но это было не так уж и важно. В 1960-е и 1970-е годы Гелл-Манн оставался самым мейнстримовым физиком из всех и работал в наиболее популярном научном направлении — том самом, которое Фейнман пытался «игнорировать». Во многом эти две иконы современной науки были полярными противоположностями, Адольфом Менжу и Уолтером Маттау[162] теоретической физики. Гелл-Манну нравилось узнавать и правильно произносить названия — настолько правильно, что Фейнман однажды не понял (или сделал вид, что не понял) такое простое слово, как Монреаль. Собеседникам Гелл-Манна часто казалось, что непопулярные варианты произношений и культурные аллюзии он использует с одной целью — внушить им чувство собственной неполноценности. А Фейнман презирал педантичную точность и произносил слова «как пишется, так и слышится», иногда нарочно делая ошибки. Гелл-Манн увлекался наблюдением за птицами и весьма преуспел в этом; классическая байка Фейнмана о его отце гласила, что название птицы не имеет значения, — и Гелл-Манн отлично понимал, в чей огород этот камень.

Описывая их непохожесть, коллеги прибегали ко все новым метафорам. «Мюррей, — говорили они, — из кожи вон лезет, пытаясь доказать всем свою неординарность, в то время как Дик — совершенная форма жизни, которая лишь притворяется человеком, чтобы пощадить чувства окружающих. Мюррея интересует почти все, кроме ветвей науки, не относящихся к физике высоких энергий: их он открыто презирает. Для Дика такого деления не существует, он считает науку своей территорией и компетенцией, хотя во всем остальном вопиюще невежественен. Кое-кто из весьма известных физиков терпеть не мог Фейнмана за его безответственность, которой он как будто даже гордился. Гелл-Манна тоже недолюбливали — за высокомерие и острый язык».

И этим сравнениям не было конца. Дик ходил в рубашке, Мюррей — в твидовом костюме. Мюррей обедал в «Атениуме», факультетском клубе, а Дик — в обычной столовой, «тошниловке». (Это было не совсем так. Обоих можно было встретить в любом из этих мест. В «Атениум» тогда не пускали без пиджака и галстука, но Фейнман всегда приходил в рубашке и брал с вешалки гостевых пиджаков самые нелепые и не подходящие ему по размеру экземпляры.) Фейнман говорил руками и даже всем телом, а Гелл-Манн, как подметил физик и научно-популярный автор Майкл Риордан, «спокойно сидел за столом в мягком голубом вращающемся кресле, сложив руки на груди и не меняя позы на протяжении всего разговора… Его способом передачи информации были слова и числа, а не жесты и образы».

«Эти индивидуальные различия отчетливо видны и в их теоретических исследованиях, — продолжает Риордан. — Труды Гелл-Манна основаны на математической строгости, и ради нее он готов пренебречь доступностью изложения. Гелл-Манн презирает туманные эвристические модели, служащие лишь стрелкой, указывающей верное направление; Фейнман же ими упивается, считая, что без некоторой доли неточности и двусмысленности невозможно выразить суть теории».

Однако на самом деле их методы не так уж различались. Коллеги, хорошо знавшие обоих как серьезных ученых, видели, что им несвойственно прятаться за формализмом и подменять математикой физическое понимание. Даже те, кто считал Гелл-Манна лингвистическим и культурным снобом, признавали, что в физике его, как и Фейнмана, отличали честность и прямота. За годы своей долгой карьеры Гелл-Манну удалось не только объяснить свое видение, но и очаровать им тысячи ученых. Напав на новый след, они оба неустанно шли по нему, проявляя абсолютную концентрацию и готовность испробовать любые методы.

А еще каждый из них придумал себе определенный образ, что не осталось незамеченным для наблюдательных коллег. «Мюррей носит маску человека высококультурного, — говорил Сидни Коулман. — А Дик — рубахи-парня, мальчишки из пригорода, который видит то, чего не замечают городские пижоны». Оба пытались соответствовать этим шаблонам, и в конце концов реальность стало невозможно отличить от притворства.

Гелл-Манн — натуралист, коллекционер и специалист в области классификаций — как нельзя лучше подходил на роль ученого, способного интерпретировать стремительно растущую вселенную частиц в 1960-е. Новые технологии в сфере ускорителей (на этот раз пузырьковые камеры с жидким водородом и компьютеры, позволяющие автоматизировать анализ треков столкновения) открыли ящик Пандоры, и сотни доселе неизвестных частиц вырвались на свободу. В 1961 году Гелл-Манн и — независимо от него — израильский физик-теоретик Юваль Неэман нашли способ свести в единую систему различные симметрии спинов и странности. В алгебраической терминологии это была группа, известная как SU(3), — хотя Гелл-Манн вскоре в шутку окрестил ее «восьмеричным путем»[163]. Восьмеричный путь напоминал сложный прозрачный объект, в котором, если поднести его к свету, обнаруживались семьи из восьми, десяти или даже двадцати семи частиц. Эти семьи были разными, но некоторые их свойства совпадали, в зависимости от того, как на них смотреть. Восьмеричный путь стал новой периодической таблицей, которая считалась триумфом классификации прошлого века, так как выявила скрытые закономерности в мире разрозненных химических элементов, между которыми существовала численная взаимосвязь. Но по сравнению с таблицей Менделеева открытие Гелл-Манна являлось более динамической системой. В теории групп одна операция влекла за собой множество других, как перетасовка карточной колоды или поворот граней кубика Рубика.

Теория Гелл-Манна обладала такой силой, потому что была воплощением концепции, которую любой физик высоких энергий считал краеугольным камнем своего метода, — концепции неточной симметрии, «почти-симметрии», или — термин, который укоренился в итоге, — нарушенной симметрии. В мире частиц было полно таких почти-симметрий, представлявших опасность для теоретика: они служили своего рода «запасным выходом» на случай, если ожидания не совпадут с реальностью. Нарушенная симметрия подразумевала процесс, изменение состояния. Когда вода замерзает, она утрачивает свою симметрию; система временно выглядит иначе, если взглянуть на нее с другой стороны. Типичный пример нарушения симметрии — магнит, который сам «выбирает», как себя вести. В физике частиц такие примеры часто казались выбором, сделанным Вселенной, когда она сгущалась и из горячего хаоса превращалась в прохладное вещество, cодержащее многочисленные случайные асимметрии.

В очередной раз доверившись своим расчетам, Гелл-Манн предсказал существование доселе неизвестной частицы, которая является следствием нарушения симметрии. Омега-гиперон обнаружили в 1964 году; для этого команде из тридцати трех физиков-экспериментаторов пришлось просмотреть более трехсот тысяч метров фотопленки. Через пять лет Гелл-Манн получил свою Нобелевскую премию.

Его следующее и самое знаменитое открытие было сделано в результате попыток понять и объяснить эффективность «восьмеричного пути» для описания поведения частиц. SU(3) наряду с восьмикомпонентными и десятикомпонентными семьями должна была включать основную семью из трех элементов. Это выглядело странным упущением. Согласно теории групп эта троица должна была обладать дробными электрическими зарядами: 2/3 и –1/3. Поскольку до сих пор заряд всех частиц был единичным, это казалось невообразимым даже по современным стандартам. И тем не менее в 1963 году Гелл-Манн и — независимо от него — молодой физик-теоретик из Калтеха Джордж Цвейг выдвинули такое предположение. Цвейг назвал свои частицы тузами, но верх в лингвистической битве снова одержал Гелл-Манн, предложивший в качестве названия бессмысленное кряканье, кварк. (Вообще-то Гелл-Манн настаивал, что придуманное им слово произносится иначе — «кворк», но название прижилось. А позже он обнаружил, что в литературе слово «кварк» уже встречалось: в романе Джойса «Поминки по Финнегану» была фраза «три кварка для мистера Марка».)

Гелл-Манну и другим ученым понадобились годы на изобретение всевозможных уловок, чтобы подвести поведение кварков под сколько-нибудь логичную схему. Так, им пришлось придумать новую характеристику частиц под названием «цвет»: она была совершенно искусственной, никак не связанной с цветом в привычном понимании. Другой такой характеристикой был «аромат»: Гелл-Манн решил, что аромат у частиц может быть верхним, нижним и странным. Также предполагалось существование антикварков и антицвета. Новая частица-посредник, получившая название глюона, должна была переносить цветовое взаимодействие от одного кварка к другому. Все эти новшества вызвали в сообществе физиков весьма скептическую реакцию. Джулиан Швингер написал, что эти частицы, видимо, издают «оглушительный писк, щебет, кряки и кварки». Цвейг, гораздо более чувствительный к критике, чем Гелл-Манн, решил, что его карьере нанесен непоправимый урон. Теоретикам кварка пришлось смириться с мыслью, что их частица так никогда нигде и не появится, хотя ее усиленно искали в ускорителях и глубоководных морских отложениях, подвергнувшихся воздействию космических лучей.

Проблема соотнесения кварков и реальности стояла гораздо острее аналогичной проблемы с уже знакомыми электронами. У Цвейга был конкретный взгляд на кварки — и чересчур умозрительный для научного сообщества, еще со времен Гейзенберга научившегося обращать внимание лишь на наблюдаемое. Гелл-Манн сказал о его работе: «Наглядная модель кварков? Это для болванов». Он отдавал себе отчет в том, какие философские и социологические проблемы создаст утверждение о реальности кварков. Для него самого кварки поначалу были элементом некой создаваемой им игрушечной теории, которую он подробно исследовал, чтобы потом отбросить. «Забавно размышлять о том, как вели бы себя кварки, будь они физическими частицами с конечной массой (а не чисто математическими величинами, масса которых равна бесконечности)», — писал он. «Будь они физическими частицами» — математики всегда находили прибежище в сослагательном наклонении. Он призывал «искать устойчивые кварки», но тут же добавлял: «Эти поиски помогут убедиться в том, что кварков в реальности не существует». В последующие годы комментаторы не раз ставили подобные оговорки ему в вину. Один физик был особенно беспощаден: «Я всегда считал эти слова закодированным посланием. На самом деле оно означало: если кварки не найдут, вспомните, что я это предвидел; если найдут, не забудьте: я обнаружил их первым». Для Гелл-Манна эти уколы стали постоянным источником обиды.

Тем временем Фейнман так долго игнорировал происходящее в физике высоких энергий, что попытка нагнать текущую ситуацию сама по себе превратилась в долгосрочный проект. Он старался уделять больше внимания экспериментальным данным, а не выкладкам теоретиков. Как и раньше, он читал научные работы лишь до тех пор, пока не вникал в суть, а дальше пытался найти решение проблемы самостоятельно. «Я всегда считал, что мне достаточно постичь закономерности природы, а разбираться в методах моих коллег совсем необязательно», — сказал он в эти годы одному историку. И он действительно сумел противостоять «модным» направлениям исследований. Однако теперь он был вынужден повернуться лицом к сообществу, от которого столько лет держался в стороне. Настало время, когда без общепринятой методологии обойтись было невозможно, и аутсайдеру стало не под силу решать всё более сложные и специфические проблемы современной физики. Фейнман, одно время прекративший преподавать физику высоких энергий, в конце 1960-х начал снова. И поначалу кварки не входили в программу его курса.

К концу 1960-х — началу 1970-х в лаборатории, расположившейся среди пологих холмов Северной Калифорнии недалеко от Стэнфордского университета, установили новый ускоритель. Он сыграл главную роль в экспериментах с сильным взаимодействием, которые и помогли обнаружить кварки. Трехкилометровая труба Стэндфордского центра линейного ускорителя[164] пролегла под травянистым ландшафтом. Наверху, на земле, на фоне пасущихся коров молодые физики в рубашках и джинсах — всего около ста человек — отдыхали за столами для пикников и сновали между многочисленными корпусами. А внизу, под землей, в прямой, как лезвие ножа, медной вакуумной трубе поток электронов устремлялся к протонной мишени. Здесь электроны достигали энергий гораздо больших, чем могли предположить ученые. Они поражали цель внутри конечной станции, сконструированной наподобие гигантского самолетного ангара, и затем, если повезет, входили в детектор, расположенный в бетонном блокгаузе (он был выложен свинцовыми кирпичами и передвигался по железнодорожным рельсам почти под самым потолком). В одних случаях результат фиксировали высокоскоростные кинокамеры, в других — группы ученых при помощи автоматического устройства, способного распознавать треки частиц на сотнях миллионов отснятых кадров (стандартное число снимков, получаемое в ходе эксперимента длиной в месяц). В одной пузырьковой камере, расположенной на конце луча, за пять с половиной лет ее службы обнаружилось семнадцать новых частиц.

С помощью ускорителя ученые исследовали сильное взаимодействие. (Эта сила получила такое название, поскольку на крайне малых расстояниях внутри ядра именно она противостояла электромагнитному отталкиванию и связывала протоны и нейтроны.) Подверженные ему частицы получили общее название адронов. Фейнман пытался понять механизм сильного взаимодействия при столкновении адронов. Проблема была не из простых: при высоких энергиях столкновения, ставших доступными для изучения при исследовании внутриядерных процессов, «кусочки» адронов разлетались в стороны совершенно бессистемно. Сами адроны не были ни простыми, ни точечными. У них был размер, и они, по-видимому, состояли из других частиц. Фейнман говорил, что пытаться разобраться во взаимодействии адронов — все равно что стараться изучить строение наручных часов, ударяя их друг о друга и наблюдая, как осколки разлетаются во все стороны. Тем не менее летом 1968 года он стал регулярным гостем в Стэнфордском центре и увидел, насколько проще было взаимодействие электронов и протонов: электрон просто врезался в протон, как пуля.

Он остановился у сестры. Джоан получила работу в исследовательской лаборатории и переехала в Стэнфорд. Ее дом находился через дорогу от Сэнд-Хилл-Роуд и Национальной лаборатории. Тем летом в патио Фейнманов часто собирались физики, чтобы послушать истории Ричарда; когда ему в голову приходила новая идея, он оглушительно громко хлопал в ладоши. Например, он говорил о «блинчиках», визуализируя частицы как лепешки с твердой начинкой.

Сотрудничество с Калтехом представлялось экспериментаторам из Стэнфордского центра очень важным, но к концу 1960-х в Калтехе правил Гелл-Манн, а не Фейнман. Методы Гелл-Манна — современная алгебра и математический каркас его теории кварков — привели к возникновению целой научной субкультуры; теоретики из Стэнфордского центра пытались применить его инструменты к малым расстояниям и более высоким энергиям. В центрах ускорителей вроде Стэнфордского теоретики изучали главным образом простейшие реакции — две частицы на входе, две на выходе, — хотя в результате большинства столкновений рождались многочисленные новые частицы. Экспериментаторы стремились получить максимально точные данные, но в этом хаосе какая-либо точность, казалось, была невозможна. Фейнман придерживался другой точки зрения. Он вывел формулу, при помощи которой можно было оценить рассеяние двадцати, пятидесяти и даже большего количества частиц. При этом импульс каждой частицы измерять не требовалось — нужно было лишь просуммировать все возможные варианты. Похожую теорию тогда развивал физик-теоретик из Стэнфорда Джеймс Бьоркен. Электрон «врезается» в протон и выходит с другой стороны вместе с «брызгами» не поддающихся измерению фрагментов. Единственным неизменным фактором в данном случае остается выходящий электрон. Бьоркен решил не рассчитывать величины всех многочисленных «брызг», а определить рассеяние и траекторию выходящих электронов — среднюю для многочисленных столкновений.

В ходе работы с данными он вывел удивительную закономерность — феномен, который назвал скейлингом — масштабной инвариантностью[165]. Независимо от величины импульса и энергий процесса рассеяния электронов данные выглядели одинаково. Бьоркен не нашел, как это интерпретировать. У него возникло несколько догадок, которые он описал языком современной алгебры. Когда Фейнман прибыл в Стэнфорд, Джеймс был в отъезде. Увидев график, составленный Бьоркеном, и не зная, для чего он предназначен, Фейнман понял его смысл и продолжил расчеты. Это заняло у него весь вечер. Оказалось, график иллюстрировал его собственную теорию блинчиков, которой он посвятил все лето.

Фейнман решил «замести под ковер» не поддающийся исчислению кишащий рой протоновых фрагментов, предположив существование таинственной новой частицы, которую назвал партоном (не мудрствуя лукаво, он образовал название частицы от слова part — часть). Так в «Оксфордском словаре английского языка» наконец появилось придуманное им слово. Фейнман сделал лишь два предположения о природе партонов: это точечные частицы, и между ними не происходит какого-либо значительного взаимодействия: они просто свободно плавают внутри протона. Это была всего лишь абстракция, не поддающееся наблюдению понятие, а физики старались без особой необходимости к таким понятиям не прибегать. Но партоны на удивление легко визуализировались. Они оказались теми самыми крючками, на которые без труда крепилась прежняя теория поля, где все было понятно и управляемо — теория с волновыми функциями и легко высчитываемыми амплитудами вероятностей. Нашлась аналогия и в квантовой электродинамике: здесь тоже были свои партоны — «голые» электроны и фотоны.

Фейнман показал, что столкновение с этими твердыми «кусочками» внутри протона совершенно естественным образом и приводит к масштабной инвариантности (о чем и говорил Бьоркен), в отличие от столкновений с полновесными целыми протонами. Он предпочел не определять, каким квантовым числом они обладают, и решил ни в коем случае не переживать из-за того, окажутся ли его партоны и кварки Гелл-Манна и Цвейга с дробным зарядом одной и той же частицей.

К возвращению Бьоркена теория групп уже кишела партонами. Фейнман осадил его расспросами. Бьоркен боготворил Фейнмана еще со студенческой скамьи, со времен старого курса квантовой электродинамики в Стэнфорде. «Когда появились фейнмановские диаграммы, — вспоминал он, — это было как солнце, пробивающееся сквозь тучи, — с радугами и горшочком золота. Блестяще! Глубокое физическое объяснение!» А теперь сам Фейнман во плоти стоял перед ним и объяснял ему его же теорию — только новым языком, используя новые визуальные образы. Бьоркен сразу понял, что Фейнману удалось разгадать загадку, мысленно поместив себя внутрь электрона и таким образом увидев то, что видит электрон, движущийся со скоростью света, — летящие ему навстречу протоны, которые сплющились до блинчиков в силу релятивизма. Релятивизм замедлил их внутреннее время, по сути — и с точки зрения электрона — заморозив протоны и сделав их неподвижными. Хаотичное взаимодействие электрона с океаном разных частиц в теории Фейнмана представало гораздо более простым взаимодействием электрона с единственной точечной частицей, которую он выделил в этом океане, — партоном. Прямым следствием такой физической картины и был скейлинг Бьоркена. Экспериментаторы моментально воспользовались этой моделью, объяснявшей их данные.

Партонная модель была чрезмерным упрощением. Она не объясняла ничего, что не смог бы объяснить Бьоркен, но при этом объяснение Бьоркена казалось не таким всеобъемлющим. Партоны были понятием весьма абстрактным; рассказать о них без бурной жестикуляции не представлялось возможным. Но физики ухватились за партонную модель как за спасательный круг. Через три года Фейнман опубликовал официальное исследование, но понадобилось еще много лет, прежде чем в научных кругах пришли к окончательному и решительному пониманию, что партоны и кварки — одна и та же частица.

Тузы Цвейга, кварки Гелл-Манна и партоны Фейнмана стали тремя путями к одному и тому же пункту назначения. Эти составляющие материи являлись квантами нового поля, благодаря чему наконец появилась возможность вывести теорию поля для сильного взаимодействия. В отличие от более старых частиц, кварки так никто и не обнаружил; тем не менее они были признаны реальными. В 1970 году Фейнман и два его студента взялись за совместный проект. Фейнман хотел собрать обширный каталог данных по частицам, пытаясь понять, объясняет ли простая партонная модель поведение всех частиц. Он снова выбрал необычную схему, используя не данные по столкновению адронов, интересовавшие большинство теоретиков, а сведения, позволявшие ему мыслить в категориях электромагнитной теории поля последнего поколения. Как бы то ни было, убедившись в верности своей идеи, он, по его собственным словам, «обратился в кваркерианство», хотя и подчеркивал, что любая модель ненадежна. «Возможно, кварковая картина является фундаментальной для физики адронов, — говорилось в его работе. — Что касается ее парадоксов, нам нечего больше добавить — разве что показать, как точно эта удивительная модель объясняет все». Молодые теоретики научились объяснять конфайнмент — неспособность наблюдать кварки в свободном состоянии, то есть поодиночке — с точки зрения силы, стремительно растущей по мере увеличения расстояния, что составляло странный контраст с силами гравитации и электромагнетизма[166]. Кварки стали реальными не только потому, что в ходе хитроумных экспериментов их опосредованно можно было «увидеть», но и потому, что физикам-теоретикам стало все сложнее сконструировать стройную модель, в которой не было бы кварков. Они стали настолько реальными, что их изобретателю Гелл-Манну пришлось постфактум выслушивать критику: мол, почему он раньше в них не верил? Гелл-Манн так и не понял, зачем Фейнман создал свой альтернативный кварк, и настаивал на различении кварка и партона, хотя в конце концов границы между ними стерлись. При любой возможности он называл частицы Фейнмана аферой. Как и Швингеру много лет назад, Гелл-Манну пришлось не по душе, что физики прославляют идею, которая ему представлялась чрезмерно простой и которую мог использовать кто угодно.

Кварки оказались реальными и остаются такими, по крайней мере, для физиков нашего времени. Партоны — нет. Но что это значит — реальность? Для Фейнмана этот вопрос никогда не терял своей значимости. В книге «Взаимодействие фотонов с адронами», составленной из его лекций на эту тему, содержатся следующие размышления:

«Мы построили очень высокий карточный домик, водрузив друг на друга множество необоснованных гипотез… Даже если наш домик не развалится и окажется построенным правильно, это не докажет существование партонов… С другой стороны, партоны могли бы стать полезной психологической уловкой… и если они по-прежнему будут подтверждать другие верные предположения, то в итоге станут «реальными» — не менее реальными, чем любая теоретическая структура, придуманная для описания природы».

Фейнман снова оказался в центре современной физической теории. Его язык и методы главенствовали в физике высоких энергий еще несколько лет. Тем временем ему не терпелось двигаться дальше — по крайней мере, он убеждал себя в этом.

«Я немного расстроен, — признался он историку после публикации первой работы о партонах. — Тяжело думать об одном и том же, поэтому мне нужно сменить тему. Видите ли, если я буду и дальше заниматься тем же самым, все будет в порядке, но добиться новых результатов будет трудно… Эти партоны имели такой успех, что я стал популярным. Мне необходимо срочно найти другое, непопулярное занятие».

Фейнман регулярно отказывался давать рекомендации для Нобелевского комитета, но в 1977 году, после того как Гелл-Манну уже вручили Нобелевскую премию (1969), он нарушил свое правило и втайне от всех порекомендовал номинировать на нее Гелл-Манна и Цвейга — ученых, открывших кварки.