Новые частицы, новый язык
За пять лет, прошедших после триумфа новой квантовой электродинамики, эта сфера науки неоднократно претерпевала радикальные изменения. Научный язык, область интересов, техническое оснащение — почти каждый месяц возникало что-то новое. Ежегодно экспериментаторы и теоретики собирались на «рочестерские конференции», получившие свое название в честь первого места их проведения — города Рочестер в штате Нью-Йорк. Эти мероприятия выросли из ставших уже легендарными конференций на Шелтер-Айленде, в Поконо и Олдстоуне, но были крупнее, насчитывали уже десятки (а позже и сотни) участников и лучше финансировались.
Ко времени первой рочестерской конференции, состоявшейся в конце 1950 года, квантовая электродинамика уже устарела; ее теории полностью подтверждались экспериментами, но были очень далеки от новой сферы интересов ученых-физиков. 1950 год стал своеобразной вехой: он ознаменовался открытием частицы, обнаруженной не в космических лучах, а в экспериментальном ускорителе. Это был нейтральный пи-мезон, или пион — нейтральный, потому что он не имел заряда. На самом деле экспериментаторы выявили не сам пи-мезон, а момент его немедленного распада под воздействием пары гамма-лучей. Эфемерность этой частицы, живущей десять миллионных миллиардных долей (10-17) секунды, выводила ее за пределы привычного мира столов и стульев, химии и биологии, где она не имела какого-либо значения. В 1950 году ее время жизни считалось очень коротким. Но стандарты менялись. Уже через несколько лет в таблице частиц такая единица причислялась к категории устойчивых. Тем временем исследователей космических лучей (которые в основном были британцами), направлявших фотографические пластины в небо на воздушных шарах, насчитывались уже легионы, и их профессия внезапно перестала считаться такой уж редкой. «Джентльмены, произошло вторжение, — объявил один из лидеров в этой области. — Нас заменили ускорители».
Прежде физики крайне неохотно добавляли к обширному списку элементарных частиц новые наименования. Теперь об этом забыли; каждый экспериментатор мечтал совершить как можно больше открытий. В измерении частиц также произошли большие перемены с тех пор, когда электроны правили балом. Рассчитать массу частицы по хвостовому следу, оставленному в облачной камере продуктами вторичного или третичного распада, было не так уж просто. Приходилось делать множество допущений при расчетах. Обнаружить частицу, дать ей название, вывести закон ее распада на другие частицы — это оказалось само по себе серьезной и достойной интеллектуальной задачей. Так появились новые емкие уравнения: ?— + p ? ?0 + n, где при распаде отрицательно заряженного пиона и протона возникают нейтральный пион и нейтрон. Да что уж говорить о массе — сами объекты исследования были неуловимы. Заявления о существовании или несуществовании той или иной частицы превратились в тонкий ритуал, окруженный предвкушениями и прогнозами и походивший на попытки предугадать, отложат ли матч из-за дождя.
Но все это относилось к области экспериментальной физики, а Фейнман с началом эпохи ускорителей заинтересовался методологией и ловушками, подстерегающими физиков-теоретиков. Большое влияние на него оказал Бете, всегда стремившийся обосновать свои теории интуитивными расчетами, и Ферми, последний из великих физиков, которые были одновременно и экспериментаторами, и теоретиками.
Бете тогда занимался разработкой формул вероятностей для неправильных (обратных) кривых, отображавшихся на фотографиях из облачных камер. Физик Марсель Шайн заявил, что в ходе экспериментов с ускорителем обнаружил новую частицу; последовала привычная в таких случаях суматоха. Бете же засомневался. Энергии, высвободившейся в ходе эксперимента, было явно недостаточно для возникновения частицы, описанной Шайном. Фейнман потом еще долго помнил спор двух физиков, их лица в зловещем отблеске светового стола для разглядывания фотографических пластин. Рассмотрев одну из пластинок, Бете сказал, что газ в облачной камере образует завитки, и кривые искажаются. Изображения на трех следующих пластинах также были неточными. Наконец ему попалась четкая фотография, и он заявил о статистической вероятности ошибки. Шайн возразил, что такая вероятность выявлена лишь в одном случае из пяти. Да, ответил Бете, и мы уже рассмотрели пять пластин. Фейнману, присутствовавшему при этом разговоре, позиция Шайна казалась классическим примером самообмана: ученый верит в результат, который хочет получить, поэтому начинает придавать повышенное значение данным в свою пользу и недооценивать свидетельства, опровергающие его позицию. Шайн раздосадованно заявил: у вас на каждый случай есть отдельная теория, а я разработал единую концепцию, объясняющую всё. Конечно, произнес Бете, но разница в том, что все мои теории верны, а ваша единственная — ошибочна.
Через несколько лет Фейнман оказался в Беркли как раз в то время, когда восторженные экспериментаторы решили, что обнаружили антипротон — частицу, которая, как казалось, должна существовать при высоких энергиях. Но Фейнман считал, что при ста миллионах электронвольт (максимальная мощность ускорителя на тот год) антипротон обнаружить невозможно. Как когда-то Бете, он пошел в темную комнату посмотреть на пластины: из десятка сомнительных изображений лишь одно казалось абсолютно четким — на его-то основе и было сделано открытие. Как и положено траектории античастицы, след на снимке изгибался в обратном направлении.
В вакуумной камере есть какой-то предмет, сказал Фейнман.
Там ничего нет, ответили экспериментаторы, кроме тонких стеклянных стенок.
Но что-то удерживает верхнюю и нижнюю пластины вместе, ответил Фейнман. И действительно, они соединялись четырьмя небольшими болтами.
Он снова взглянул на белый дугообразный след в магнитном поле и ткнул карандашом в стол в нескольких сантиметрах от края фотографии. Болт находится здесь, сказал он. Достали схему камеры и, наложив ее на фотографию, обнаружили, что Фейнман указал точное место. Обычный протон, ударившись о болт, отскочил и попал на снимок.
Позднее практики из Калтеха признавались, что само присутствие Фейнмана на экспериментах оказывало на них моральное давление, влияло на их методы и открытия. Он был безжалостным скептиком. Любил вспоминать знаменитый эксперимент с каплей масла Роберта Милликена — одного из первых великих калтеховских физиков. Милликен измерил неделимый заряд электрона в частице, которую изолировал внутри крошечных плавающих масляных капель. Эксперимент оказался верным, но в расчеты закралась ошибка, и последующие опыты, проведенные на его основе, стали позором для физиков. Теперь уже никто не тыкал пальцем в небо, надеясь оказаться близко к правильному ответу; физики определяли диапазон, в котором должен находиться верный результат, и медленно сужали круг. Ошибка Милликена психологически давила на физиков и, подобно далекому магниту, сбивала фокус наблюдений. Если экспериментатор говорил Фейнману, что сделал вывод в ходе сложного процесса исправления данных, тот обязательно спрашивал: а как вы определили, в какой именно момент необходимо прекратить корректировку? Вы решили сделать это до того, как увидели, какое влияние это оказывает на результат? Исправлять, пока ответ не покажется «правильным» — как легко было угодить в эту ловушку! Чтобы избежать ее, нужно владеть всеми тонкостями работы ученого. Быть не только честным, но и упорным.
По мере продвижения вперед «эпоха частиц» предъявляла всё новые требования к физикам-теоретикам высшего ранга (а их ряды ширились с каждым днем). В процессе изучения взаимодействия частиц им приходилось проявлять чудеса изобретательности. Соревнуясь друг с другом, они придумывали абстрактные понятия, с помощью которых можно было бы организовать данные, поступающие из ускорителей. C возникновением новых квантовых чисел (таких как изотопический спин — величина, остававшаяся неизменной, невзирая на множественные взаимодействия) рождался новый взгляд на понятие симметрии, которая стала в то время основным предметом обсуждения в научной среде. Понятие симметрии в физике не слишком отличалось от симметрии в представлении ребенка, вырезающего фигурки из сложенного вдвое листа: нечто сохраняет свои свойства, в то время как все остальное изменяется. Например, при зеркальной симметрии правая и левая части остаются одинаковыми после того, как поменялись местами. При вращательной симметрии идентичность сохраняется после вращения системы по оси на определенный угол[149]. А вот симметрия изотопического спина, как выяснилось, была тождественностью двух компонентов ядра, протона и нейтрона; двух частиц, состоявших в необычайно близких отношениях. Одна несла заряд, другая была нейтральной; их массы почти совпадали. Ученые по-новому взглянули на свойства этих частиц: было установлено, что они являются двумя состояниями одной единицы, называемой нуклоном. Единственным различием между ними была проекция изотопического спина: у одной частицы она была направлена вверх (1/2 у протона), у другой — вниз (–1/2 у нейтрона).
Теоретикам нового поколения предстояло не только досконально изучить квантовую электродинамику, описанную Фейнманом и Дайсоном, — они также должны были овладеть богатым репертуаром методов, используемых на этой неизведанной территории. Понятие пространства для физиков уже давно обросло самыми диковинными интерпретациями. Пространства здесь были воображаемыми, величинам соответствовали оси, а не физическое расстояние. К примеру, «пространство движущей силы» позволяло прогнозировать и визуализировать движущую силу частицы, как будто та была всего лишь пространственной переменной. Со временем физики освоились в воображаемых пространствах, которых становилось все больше. Изучение пространства изотопического спина стало определяющим для понимания сил, оказывающих действие на нуклоны.
В научный обиход вошли и другие понятия. Идея симметрии предполагала, что различные частицы должны группироваться «семьями»: парами, тройками или так называемыми мультиплетами (совокупностями). Физики экспериментировали с «правилами отбора», которые предписывали, что должно и не должно происходить при столкновении частиц в условиях неизменности конкретных величин, таких как заряд. Так, ровесник Фейнмана Абрахам Пайс интуитивно вывел правило ассоциативного рождения. Он предположил, что при определенном типе взаимодействия образуются группы новых частиц, предположительно обладающих новым квантовым числом неизвестной природы — странностью («странные частицы»). У Фейнмана возникла аналогичная идея в Бразилии, но он не стал ее развивать, так как она ему не понравилась. На протяжении нескольких лет ассоциативное рождение оставалось самой модной концепцией в физике. Экспериментаторы искали ей подтверждения и опровержения. В конечном итоге основным вкладом этой теории в науку оказалось то, что ее популярность вызвала огромное раздражение у молодого теоретика Мюррея Гелл-Манна. Он считал, что Пайс неправ, и мучился от зависти.