ГЛАВА III ШТУРМ АТОМА

We use cookies. Read the Privacy and Cookie Policy

ГЛАВА III

ШТУРМ АТОМА

ПЕРВЫЕ ГОДЫ

Фредерику Жолио было уже 25 лет, но прежде всего ему пришлось выполнять требование Ланжевена, повторенное мадам Кюри: сдать экзамены, получить степень бакалавра. Это было трудно и скучно: садиться снова за школьные учебники, постигать латинскую грамматику и описания жизнедеятельности французских королей. Вчерашнему инженеру и офицеру, взрослому человеку было неловко сдавать экзамены вместе с мальчуганами. Он одолел школьную премудрость, сдал экзамены, получил степень бакалавра и почти сразу, не давая себе передышки, сдал вторую серию экзаменов, приобретя и степень лиценциата. Не будучи выпускником Эколь Нормаль или Сорбонны, молодой инженер долго был «чужаком» в новой среде.

Он не думал о будущем, не спрашивал себя, что ждет его впереди. Перед ним была одна цель: овладеть наукой о радиоактивности, работать, работать продуктивно. Учиться, учиться, быть достойным такого исключительного руководителя, как Мария Кюри.

Она была требовательна, но новый лаборант успешно справлялся со всеми ее заданиями, поражая даже ее быстротой и инициативой.

«Этот мальчик — настоящий фейерверк!» — сказала мадам Кюри дочери.

Сначала мадам Кюри поручила Фредерику некоторые исследования электрических свойств тонких слоев металлов. Фредерик сразу же показал себя искусным и изобретательным экспериментатором. Он разработал новые способы приготовления тонких металлических пленок, сконструировал и собственноручно изготовил изящные установки. Меняя толщину пленок, температуру, содержание газов, он наблюдал, как сказывается это на электрических свойствах пленки.

Не ограничиваясь чисто теоретическими результатами, Фредерик настойчиво думал об их практическом применении, изобретал и совершенствовал. В своих статьях — а они начали появляться в печати уже с 1927 года — он описал новый метод приготовления очень чувствительных электросопротивлений, приборов для измерения температуры и лучистой теплоты. Маститый английский физик Томсон воспользовался его методом приготовления тонких пленок золота и в одной из своих статей выразил благодарность молодому лаборанту из Института радия.

Одновременно Жолио разрабатывал новые методы электрохимического исследования радиоэлементов, нашел и проверил закон зависимости скорости выделения радиоактивного элемента из раствора. Сконструированный им прибор позволял обнаруживать выделение радиоактивного вещества даже в таких ничтожных количествах, как 0,00000001 грамма, причем эти количества точно измерялись, чего не удавалось достигнуть раньше.

Ему пришлось много учиться, овладевая новой специальностью. Мария Кюри вдумчиво направляла его. Он работал непосредственно в ее лаборатории, рядом, а часто и вместе с Ирен Кюри.

Сначала Ирен показалась ему холодной и замкнутой. Высокая, быть может, немного слишком мужественная девушка, с уверенным взглядом, с высоким, выпуклым лбом, над которым слегка вьются светлые волосы. Она задумчива, углублена в себя, молчалива, внешне неприветлива, всегда спокойна и невозмутима. Она безжалостно прямолинейна и правдива до резкости. Иные принимают ее сдержанность за высокомерность. Но ее кажущаяся холодность — это страстная внутренняя сосредоточенность.

О радиоактивности Ирен знала гораздо больше, чем Фредерик. Нередко она давала ему разъяснения, поражавшие его своей четкостью. Научные исследования Ирен делали ее достойной продолжательницей славной семейной традиции Кюри. У нее было уже несколько печатных работ. Как и мать, она делала всегда сама все препараты, никому не доверяла отсчеты по приборам. Ее научная работа отличалась глубиной подхода и точностью результатов.

Она только что защитила диссертацию на тему о пробеге альфа-частиц полония. В ее диссертации был применен чрезвычайно изящный метод одновременного наблюдения очень большого числа альфа-частиц.

Ирен была уже опытным экспериментатором, и мать поручила ей ознакомить нового лаборанта с техникой измерений. В общей работе они узнали и оценили друг друга.

Много лет спустя Фредерик Жолио вспоминал: «Тогда мне и в голову не приходило, что когда-нибудь мы сможем пожениться. Но я наблюдал за нею. Все началось с наблюдений. При ее внешней холодности, такой, что она иной раз забывала поздороваться, она не вызывала симпатий среди окружающих, в лаборатории. Наблюдая за ней, я открыл в этой девушке, которую многие считали лишь чем-то вроде  «неотесанного камня», существо крайне поэтичное и тонкое. По характеру она во многом была живым воплощением своего отца. Я много читал о Пьере Кюри, слышал рассказы профессоров, знавших его, и я встретил в его дочери ту же чистоту, тот же здравый смысл, то же спокойствие…»

Сначала Фредерику казалось, что Ирен — только исследователь, что она живет исключительно лабораторией. Но очень скоро он узнал, что Ирен — великолепный спортсмен, она прекрасный гребец, неутомимый ходок по горам, непревзойденная лыжница. Это еще сильнее подняло ее в глазах Фреда, по-прежнему увлекавшегося спортом.

Оказалось далее, что Ирен великолепно знает поэзию, не только французскую, но и немецкую, английскую, польскую. Она и сама пишет стихи, переводит на французский стихи Киплинга.

Они были совсем разными по характеру — живой, увлекающийся, горячий, экспансивный Фредерик и спокойная, рассудительная, сдержанная Ирен. Но чем больше узнавали они друг друга, тем больше сближались.

Они работали в лаборатории вместе, и понемногу вошло в обычай, что после работы Фред провожал Ирен домой на Бетюнскую набережную, где она жила с матерью и сестрой. А затем последовали вылазки в лес, долгие прогулки в горы.

И постепенно — как вспоминал позже Фредерик — «Мы поняли, что нам трудно будет обойтись друг без друга. Характеры у нас были разные, но как бы взаимно дополняющие. А ведь для работы и для жизни лучше всего союзы не одинаковых, но взаимно дополняющих характеров».

Брак Фредерика Жолио и Ирен Кюри был зарегистрирован 4 октября 1926 года.

НА ПОДЪЕМЕ

Ирен Кюри стала не только подругой жизни Фредерика Жолио, матерью его детей, но и верным товарищем в научной работе, а потом соратником в битве за мир.

Совместная научная работа Ирен Кюри и Фредерика Жолио ведет свое начало с 1926 года. И дальше, всю жизнь, они работали вместе, и в юности и позже, когда оба стали всемирно прославленными учеными, оба — руководителями больших институтов, оба — борцами за Науку, за Мир.

Всего за свою жизнь Фредерик Жолио опубликовал около ста двадцати научных работ. Из них больше шестидесяти выполнены им вместе с женой. Сначала авторы подписывались «Ирен Кюри и Фредерик Жолио», затем, объединив фамилии, стали подписываться «Ирен и Фредерик Жолио-Кюри».

Первые годы их совместной жизни были безмятежно счастливыми и спокойными. В 1927 году у них родилась дочь Элен, в 1932 году — сын Пьер.

Когда прекратилась стипендия «фонда Кюри», Фредерику пришлось думать о заработке. Не оставляя работы в Институте радия, он взялся за преподавание физики в частной школе.

В 1930 году, после защиты докторской диссертации (на тему об электрохимии полония), он был назначен научным сотрудником Национального фонда наук и получил возможность оставить школу, посвятив все свое время научным исследованиям, по-прежнему в лаборатории Кюри, неизменно вместе с Ирен.

Первое время после женитьбы молодожены жили вместе с Марией Кюри, затем поселились отдельно, но бывали в доме на Бетюнской набережной почти ежедневно. У них одни интересы, одна работа. Нередки и научные споры, когда Мария и Фредерик перебивают друг друга так быстро и напористо, что даже Ирен не успевает вставить слово.

Каждое лето они проводят вместе в приморской деревушке Ларкуэст в Бретани, излюбленном месте отдыха парижских профессоров. На каникулах здесь собирается избранное общество: историк Шарль Сеньобос, биолог Луи Лапик, астрофизик Шарль Морен, математик Эмиль Борель, физики Жан Перрен, Андре Дебьерн, Виктор Оже. Они такие же загорелые, так же одеты и так просто держатся, как и коренные жители Ларкуэста, бретонские моряки. Только научные споры, разгорающиеся подчас на пляже или на рыбачьей лодке, выдают парижских ученых.

Здесь Фредерик всей душой отдается своей страсти: рыбной ловле. Живо жестикулируя и, правду сказать, разводя руками несколько шире, чем того требует истина, он рассказывает рыбакам, какую огромную щуку он поймал в Сене: «Вот такую». Высушенные головы громадных рыб он хранит как трофеи в своем рабочем кабинете в Париже.

«Знаете ли, — подшучивает Ирен, — бывают ведь мужья, которые хранят на сердце фотографию жены. Попросите-ка Фреда показать, чью фотографию носит он с собой». В бумажнике, как оказалось, бережно хранится фотография огромной щуки, поимкой которой так безумно гордится Фредерик Жолио.

Фредерик и Ирен ловко управляют яхтой, уплывая далеко в море. А вечером при свете фонариков они отплясывают с рыбаками на деревенской площади и поют с ними народные песни. Старики, покуривая трубочки, степенно расспрашивают полюбившихся им гостей: «Что нового в Париже?» — и допоздна идет беседа в деревенском трактире.

Освеженные, веселые, возвращаются Жолио-Кюри осенью в Париж. Снова за работу!

Свои совместные исследования по радиоактивности они начали с того, что изготовили сами, своими руками самый мощный по тому времени источник альфа-лучей: препарат чистого полония еще небывалой интенсивности. Извлечение чистого полония, очистка его, накопление были операциями очень сложными и опасными: интенсивное излучение полония вредно для человека, с чем в то время считались еще недостаточно. Должно быть, именно тогда Фредерик и Ирен получили наибольшие дозы облучения.

Ирен к тому же, вероятно, получила громадную дозу облучения, еще когда она обслуживала примитивные рентгеновские аппараты во фронтовых госпиталях. Они были молоды, жизнерадостны и полны здоровья, но уже с тех пор радиоактивное излучение неумолимо совершало свое дело, разрушая их кровь.

Ирен и Фредерик сами конструировали, сами выверяли свои приборы. Фредерик и тогда и позже всегда настаивал на этом: экспериментатор должен знать, чувствовать свой прибор — в этом залог успеха.

Обладание мощным источником альфа-лучей дало супругам Жолио-Кюри большое преимущество перед другими. Они оказались в положении артиллеристов, имеющих орудия самого крупного калибра.

Кроме того, Фредерик с его талантом инженера-конструктора значительно усовершенствовал камеру Вильсона, что дало ему возможность увеличить пути альфа-частиц, наблюдать распад отдельных атомов и открыть новые эффекты при бомбардировке легких элементов альфа-частицами.

В 1931 году супруги Жолио-Кюри занялись тем, что в ту пору называли бериллиевым излучением. Бериллий, когда его бомбардировали альфа-частицами, вел себя странно. Ядра атомов бериллия распадались так, как это было и с другими легкими ядрами в опытах Резерфорда, но при этом распаде испускалось еще какое-то таинственное излучение, которое свободно проходило даже через толстый слой свинца. Немецкие физики Боте и Беккер, впервые наблюдавшие это явление, решили, что это сильно проникающие, мощные электромагнитные волны, гамма-лучи.

Ирен и Фредерик Жолио-Кюри воспроизвели опыты Боте и Беккера. Но они пользовались своей усовершенствованной аппаратурой, что позволило им выявить основное свойство излучения Боте и Беккера.

С первого взгляда могло показаться, что опыт супругов Жолио-Кюри поставлен нелепо. Было уже известно, что излучение Боте и Беккера способно проходить через слой свинца толщиной в десяток сантиметров. А Жолио-Кюри закрыли окошко камеры не толстым свинцом, а тонким алюминиевым листком и поместили над ним легкий парафиновый экран.

Почему? Что они надеялись найти? Вот в этом и была особенность творчества Фредерика Жолио: он не только предсказывал заранее, но он и искал, не связывая себя гипотезой.

«Если бы входное отверстие прикрывалось более толстой стенкой, то эффект выбивания ядер несомненно бы ускользнул от нас, — писал впоследствии Фредерик Жолио. — Если я подробно останавливаюсь на этих фактах, то потому, что я всегда придавал большое значение способу постановки и проведения эксперимента. Конечно, надо исходить из заранее обдуманной гипотезы, однако всякий раз, когда это возможно, опыт должен ставиться таким образом, чтобы открыть при этом как можно больше окон в сторону непредвиденного. «Кто может большее, не затрудняя себя, тому доступно и меньшее».

Они щедро «открывали окна» и не пугались непредвиденного.

18 января 1932 года супруги Жолио-Кюри сообщили на заседании Парижской Академии наук о своих результатах. Они пропустили излучение Боте-Беккера через вещества, содержащие водород (парафиновый или целлофановый листок). И что же? Оказалось, что таинственные бериллиевые лучи действуют как снаряды: они выбивают из этих веществ протоны, то есть ядра атома водорода.

Через пять недель, 27 февраля 1932 года, пришло новое сообщение. Чадвик в Англии, прочитав статью Жолио-Кюри, объяснил их результаты: бериллиевое излучение — это вовсе не электромагнитные волны, а поток новых, дотоле неизвестных частиц. Масса таких частиц должна быть близкой к массе протона, то есть ядра атома водорода.

А электрический заряд? Заряда нет! Это поток тяжелых, электрически нейтральных частиц.

Так был открыт нейтрон — новая элементарная частица.

Чадвик смог так легко и быстро объяснить результаты французских физиков потому, что он раньше уже искал нейтрон. Сами Жолио-Кюри писали об этом через два десятка лет:

«Название «нейтрон» уже было произнесено гениальным Резерфордом в 1923 году. Он высказал тогда предположение: не входят ли нейтральные частицы в состав ядра вместе с протоном? Такую предполагаемую частицу он назвал нейтроном. Однако большинство физиков, в том числе и мы, не обратили внимания на эту гипотезу. Но она все еще блуждала под сводами здания лаборатории Кавендиша, где работал Чадвик, и вполне естественно и справедливо, что последняя точка в открытии нейтрона была поставлена именно здесь. Идеи, высказанные когда-то нашими учителями — как живущими, так и ушедшими от нас, — много раз вспоминаются и забываются в их лабораториях, сознательно или подсознательно проникая в мысли тех, кто постоянно там присутствует. Постепенно эти идеи созревают: тогда совершается открытие».

Прошел еще месяц, и 11 апреля в Академии наук, а 15 апреля во Французском физическом обществе Жолио-Кюри рассказали о дальнейших результатах, окончательно доказавших, что «излучение Боте-Беккера» это не электромагнитные волны, а поток нейтронов.

Нейтроны — это и были как раз те снаряды, которые так настоятельно требовались ядерной физике. У нейтрона нет электрического заряда, поэтому он может проникать в атомное ядро, не испытывая тех сил отталкивания, которые ослабляют положительно заряженную альфа-частицу. А так как нейтрон — частица достаточно тяжелая, он энергично действует на атомное ядро, разбивая его.

Отныне ядерная физика получила в свое распоряжение мощные снаряды, которыми можно разбивать и легкие и тяжелые ядра атомов. Открытие нейтрона было сигналом к новому наступлению.

В том же году была выдвинута новая теория строения атомного ядра: ядро состоит из протонов и нейтронов, которые удерживаются вместе силами ядерного притяжения. Число протонов — это число электрических зарядов ядра. Сумма масс протонов и нейтронов — это масса атомного ядра. В ядре водорода — 1 протон. В ядре гелия, то есть альфа-частице, — 2 протона и 2 нейтрона. В тяжелых ядрах больше нейтронов, чем протонов, например, у радия 88 протонов и 138 нейтронов, а у обычного урана 92 протона и 146 нейтронов. Именно поэтому при распаде тяжелых ядер так легко образуются альфа-частицы.

Теория строения атомного ядра позволила объяснить одну давнюю загадку.

Если атомное ядро состоит из целого числа протонов и нейтронов, то атомный вес любого элемента должен быть всегда целым числом. За единицу атомного веса ученые принимают вес протона. Значит, например, атомный вес водорода должен быть равен единице (1 протон), гелия — четырем (2 протона, 2 нейтрона), хлора — тридцати пяти (17 протонов и 18 нейтронов), урана — двумстам тридцати восьми (92 протона, 146 нейтронов).

Но посмотрите на таблицу Менделеева. У большинства элементов атомный вес не целое число, а целое число с дробью: у хлора 35,5, у урана 238,07. Химики давно знали, что атомные веса элементов не случайно отличаются от целых чисел, но объяснить это не могли.

Уже в первые годы после открытий Пьера и Марии Кюри было найдено много новых радиоактивных элементов. Оказалось при этом, что среди них часто встречаются элементы, у которых атомные номера одинаковы, а массы (то есть атомные веса) различны. Например, атомному номеру 90 отвечает не только элемент торий, но и радиоторий, который получается при распаде тория, ионий (он возникает при распаде урана), радиоактиний. Как объяснить существование всех этих элементов и как разместить их в таблице Менделеева?

Ответ дал в 1910 году все тот же Содди. Он предположил, что у радиоактивных элементов существуют разновидности атомов, которые во всем сходны, но отличаются друг от друга только массой (атомным весом) и радиоактивными свойствами. Содди назвал такие элементы изотопами, что означает по-гречески «занимающий то же место». Откуда такое название? Дело в том, объяснил Содди, что все это не разные элементы, а разновидности одного и того же элемента: радиоторий, ионий и радиоактиний — это изотопы (разновидности) одного и того же элемента тория. Атомный номер у них одинаков, значит все они должны стоять в таблице Менделеева на одном и том же 90-м месте. А массы разные и радиоактивные свойства разные. Например, ионий распадается наполовину за восемьдесят три тысячи лет, а радиоактиний — за восемнадцать дней.

Изотопы бывают и у нерадиоактивных элементов. Например, есть два хлора: хлор с атомным весом 35 и хлор с атомным весом 37. Они стоят на одном и том же 17-м месте в таблице Менделеева. В природе же всегда встречается смесь обоих хлоров; первого хлора в ней поменьше, второго побольше, поэтому атомный вес обычного хлора всегда равен 35,5.

Но чем же отличаются по своему строению ядра атомов изотопов? Протонно-нейтронная теория ядра позволила найти ответ на этот вопрос, так долго не имевший решения. Изотопы различаются числом нейтронов в ядре, а число протонов у них одинаково. Например, у обоих хлоров в ядре 17 протонов, поэтому заряд, а значит и атомный номер хлора, всегда равен 17. Но у одного хлора в ядре 18 нейтронов, а у другого 20. Поэтому и массы изотопов хлора различны: 35 (17 + 18) и 37 (17 + 20).

В том же 1932 году нашли один изотоп, которому суждено было потом сыграть особую роль в науке. Оказалось, что у водорода тоже есть изотоп. Его назвали дейтерием, или «тяжелым» водородом, потому что он вдвое тяжелее обычного водорода: в его ядре, кроме протона, есть нейтрон, поэтому заряд у него, как у обычного водорода, равен единице, а масса — не единице, а двум. Тяжелый водород может, как и обычный, соединяться с кислородом, образуя «тяжелую воду». Тяжелая вода отличается по свойствам от обычной воды: кипит она не при 100 °C, а при 101,4 °C, замерзает не при 0 °C, а при +3,8 °C. Тогда, в 1932 году, в журналах много писали о тяжелой воде. Всех поразило, что, оказывается, ничтожная примесь тяжелой воды (примерно 1/6800) всегда присутствует в таком, казалось бы, до конца известном веществе, как обычная природная вода. Но никто не мог, конечно, тогда предвидеть, какая романтическая история будет связана впоследствии с именем профессора Жолио-Кюри и с тяжелой водой. Кто мог в ту пору знать, что влечет за собой всего только один лишний нейтрон в ядре атома водорода!

Трудно описать ту лавину новых исследований, которую вызвало открытие нейтрона. Начался яростный штурм атомного ядра. Новые сообщения появлялись из разных стран с такой же быстротой, с какой сменяли друг друга доклады Жолио-Кюри и Чадвика. Новые идеи подхватывались на лету, перебрасывались из одной страны в другую, оспаривались, отвергались или доказывались. «Бег на стартовой дорожке исследований», о котором писал когда-то Резерфорд, продолжался в ускоренном темпе.

Фредерик и Ирен Жолио-Кюри уверенно лидировали в этом стремительном беге. За этот знаменательный 1932 год они опубликовали одиннадцать статей. Они исследовали свойства нейтронов и условия их испускания, измерили массу нейтрона, нашли новые типы ядерных реакций. Они провели десять дней на высокогорной научной станции Юнгфрау в Швейцарии, чтобы наблюдать там космическое излучение и посмотреть, нет ли в нем нейтронов.

В своих статьях этого и следующего, столь же плодотворного, года Жолио-Кюри сообщили о своих новых открытиях. Еще в 1923 году французский теоретик Дирак предсказал, что должен существовать брат-близнец электрона — позитрон, то есть элементарная частичка с массой, равной массе электрона, но с зарядом положительным, меж тем как электрон отрицателен. Однако обнаружить позитрон удалось не сразу. Сначала его нашли в космических лучах, в том потоке заряженных частиц, который льется на землю из вселенной. Жолио-Кюри обнаружили его и на земле, применив метод Д. В. Скобельцына, то есть поместив камеру Вильсона в магнитное поле. В магнитном поле заряженные частички должны отклоняться: положительные в одну сторону, отрицательные — в другую. Такие расходящиеся следы электрона и позитрона и обнаружил Жолио. А затем Фредерик Жолио показал, что пара электрон — позитрон может родиться «из пустого места»: не из других частиц, а из энергии электромагнитного излучения. Это было потрясающим: на фотографии, снятой Жолио — теперь она приводится в учебниках физики, — было видно, как на ровном сером фоне вдруг возникают расходящиеся из одной точки пути двух вновь рожденных частиц. Энергия электромагнитного излучения преобразуется в энергию родившихся частиц — положительной (позитрон) и отрицательной (электрон).

Академик С. И. Вавилов писал, что это столь же удивительно, как если бы нам показали, что мелодия превращается в скрипку. Годом позже Жолио показал и обратное: электрон и позитрон, столкнувшись, исчезали, давая начало электромагнитному излучению.

В том же, столь богатом событиями, 1932 году Ирен была назначена руководителем работ в лаборатории Кюри Института радия. И нельзя же не сказать еще, что Элен, дочери Ирен и Фредерика, было уже пять лет, а сын Пьер родился в марте того же, богатого событиями 1932 года.

В сентябре следующего, 1933 года Фредерик Жолио впервые побывал в Советском Союзе. На первой всесоюзной конференции по атомному ядру в Ленинграде он сделал два доклада о нейтроне и о позитроне.

Через месяц, в октябре 1933 года, на очередном Сольвеевском конгрессе в Брюсселе Фредерик Жолио, от имени своего и Ирен, рассказал о проведенных ими новых опытах. Доклад вызвал жаркую дискуссию: уж очень странными и невероятными казались результаты молодых французов.

Лиза Мейтнер, выдающаяся немецкая ученая, известная точностью своих опытов и ясностью их объяснений, не скрывала недоверия. Она осуществляла такие же опыты, но не видела того, о чем говорили Жолио-Кюри. Американский физик Лоуренс тоже выразил сомнение; ведь у него работал уже первый в мире циклотрон, аппарат для придания больших энергий частицам, бомбардирующим атомное ядро. Если в его великолепно оборудованной лаборатории не наблюдали ничего подобного, наверное эти французы с их устарелым оборудованием что-то напутали.

Много лет спустя Фредерик Жолио вспоминал: «Большинство из присутствовавших на конгрессе физиков не поверило в правильность наших опытов. После заседания мы были очень огорчены, но в этот момент профессор Нильс Бор отвел нас в сторону (меня и мою жену) и сказал нам, что он придает весьма большое значение полученным результатам. Вслед за этим и Паули поддержал нас своим одобрением.

По возвращении в Институт радия в Париже мы снова принялись за работу…»

Наверное, многие физики потом пожалели, что они не прислушались к докладу и не повторили опытов Жолио-Кюри, потому что через три месяца, 15 января 1934 года, Жолио-Кюри представили во Французскую Академию наук доклад о великом открытии, обессмертившем их имена: они нашли искусственную радиоактивность.

ИСКУССТВЕННАЯ РАДИОАКТИВНОСТЬ

Вспомним: ключ от сокровищ атома был уже в руках человека — Резерфорд сумел разбить атомное ядро. Он бомбардировал азот альфа-частицами, частица попадала в ядро атома азота, выбивала из него протон, и азот превращался в кислород, точнее — в изотоп кислорода. При этом превращении выделялась энергия. Но расход энергии был несравненно больше дохода. Да, атомные ядра распадались, но лишь в то время, пока шла бомбардировка, а в ядро попадала лишь одна частица из миллионов.

В первых опытах по ядерным превращениям Резерфорд и его последователи не могли менять скорость и энергию своих снарядов. Они пользовались теми альфа-частицами, которые вылетают из атомных ядер при естественном распаде, а мы уже говорили, что ускорить или замедлить процесс естественного радиоактивного распада нельзя.

В начале тридцатых годов сильно продвинулась вперед техника ядерной физики. Были созданы ускорители, то есть установки, в которых можно увеличивать скоррсть и энергию заряженных частиц. Первая из таких установок была построена в лаборатории Резерфорда. Самый мощный ускоритель был создан в те годы в Беркли (Соединенные Штаты) в лаборатории Лоуренса.

Развитие ядерной физики тормозилось, кроме всего прочего, еще очень простой причиной: крайней дороговизной радиоактивных препаратов. Ведь радиоактивность наблюдалась лишь у таких редких элементов, как уран, радий. Очень немногие лаборатории мира могли позволить себе роскошь приобретать в достаточном количестве дорогостоящие радиоактивные материалы.

Непомерны были расходы на радиоактивные препараты и для медиков, поэтому лечение радием (кюритерапия) развивалось медленно. Радий и радиоактивные препараты почти не выходили из тиши нескольких лабораторий.

Поль Ланжевен в 1933 году писал в популярной статье о ядерной энергии: «Исследование этой области едва только начинается; оно таит в себе множество сюрпризов и колоссальные возможности в виде использования огромных ресурсов внутриядерной энергии, высвобождаемой в результате ядерных реакций.

Прометей, который научил бы людей, как зажечь этот молниеносный костер ядерных реакций, еще не появился, и это, пожалуй, к лучшему».

В Институте радия были радиоактивные препараты, приготовленные самой Марией Кюри, затем ее сотрудниками, в том числе Ирен Кюри и Фредериком Жолио. Ускорителей во Франции еще не было. Институт радия не имел средств на эти сложные и дорогие установки. Супруги Жолио работали с очень простым оборудованием, не шедшим ни в какое сравнение с великолепным циклотроном Лоуренса. Фредерик сам переделал старый радиоприемник и сделал маленький латунный счетчик[4]. Они вообще все делали своими руками. И Фредерик и Ирен любили мастерить. Оба они умели обходиться самыми простыми средствами.

Принимая во внимание простоту их опытов, казалось странным, что со времени Конгресса Сольвея не было опубликовано ни одной аналогичной работы. Причиной того, что они работали еще три месяца, не имея конкурентов, было, несомненно, недоверие физиков к доложенным ими на съезде результатам.

Если бы делегаты Сольвеевского конгресса заинтересовались результатами четы Жолио-Кюри, возможно, что некоторые из них обогнали бы французов и честь открытия искусственной радиоактивности принадлежала бы кому-либо другому.

Когда через несколько месяцев открытие искусственной радиоактивности приобрело мировую славу, тогда стало ясно, что циклотрон Лоуренса в Беркли уже создал много радиоактивных элементов как внутри прибора, так и вокруг него; вероятно, и обслуживающие его работники и сам Лоуренс стали слегка радиоактивными.

Но отнюдь не только счастливый случай помог супругам Жолио-Кюри. Ясный ум, широкая научная эрудиция, глубокое понимание научных проблем, огромная работоспособность, смелость и уверенность в своих силах, могучая научная фантазия — таковы были их неотъемлемые качества. И была еще одна особенность, поставившая этих двух физиков в ряды первых ученых мира, — способность признавать возможным даже самый невероятный и странный факт. Именно поэтому им удалось открыть явление искусственной радиоактивности, хотя экспериментальные средства, имевшиеся в их распоряжении, были значительно беднее тех, какими располагали ученые Америки и Англии.

Больше того, явление искусственной радиоактивности наверняка наблюдалось и в Англии и в Америке, но никто не сумел его открыть, ибо никто не мог так смело, как Жолио, считать возможным самое невероятное. Вспоминая об открытии искусственной радиоактивности, сами Жолио-Кюри писали через двадцать пять лет: «…Мы имеем все основания поздравить себя с тем, что мы работали с этой аппаратурой вместо того, чтобы тратить время на ее усовершенствование.

Тут есть о чем поразмыслить: всегда следует осуществить эксперимент, если он возможен, даже и в том случае, если средства, которыми можно располагать, несовершенны. Однако не следует затягивать работу, если встречаешь слишком много трудностей, вызванных этим несовершенством: в таком случае можно выиграть время, если сначала заняться улучшением средств исследования или же даже поисками других приемов наблюдений».

В чем же заключалось бессмертное открытие Ирен и Фредерика Жолио-Кюри?

Сначала они хотели исследовать бета-излучение полония с помощью камеры Вильсона, помещенной в магнитное поле, по методу Д. В. Скобельцына. К окошку камеры Вильсона они поднесли свой мощный полониевый препарат, а чтобы альфа-излучение не мешало им, поместили между препаратом и камерой Вильсона тонкий алюминиевый листок. Предполагалось, что алюминий задержит альфа-лучи (они поглощаются сильнее, чем бета-лучи) и в камере Вильсона видны будут только следы бета-частиц (электронов). Действительно, альфа-лучи поглотились алюминием. Но что за странность? В поле зрения камеры Вильсона отчетливо видны были следы двух типов частиц — отрицательных и положительных: электронов и недавно открытых позитронов.

Откуда же взялись позитроны? Их не было в первоначальном излучении полония, они появлялись лишь тогда, когда излучение полония, проходило через алюминий. А затем, уже после Сольвеевского конгресса, Жолио-Кюри обнаружили самое удивительное: они прекратили бомбардировку алюминия полониевыми лучами, а испускание позитронов продолжалось. Похоже было, что происходит естественный радиоактивный распад. Что же случилось с алюминием? Жолио-Кюри с гениальной интуицией объяснили найденный эффект: альфа-лучи, бомбардируя алюминий, превращают его в другой элемент. Испуская нейтрон, ядро алюминия превращается в ядро фосфора, но в такой фосфор, какого не существовало до тех пор на земле. Это не обычный фосфор, а никому дотоле не известный, не встречающийся в природе радиоактивный изотоп фосфора. Он быстро распадается, испуская положительные электроны.

Это было невероятно. Это было чудовищно смело, и это надо было доказать. Но как доказать, что действительно образовался фосфор? Как провести анализ, если радиофосфора гораздо меньше, чем миллиардные доли грамма?

Новый радиоактивный изотоп оказался очень недолговечным, он распадался наполовину уже за три минуты. Значит, анализ надо провести с молниеносной быстротой.

— Не укажете ли вы нам метод, который позволил бы отделить фосфор от алюминия меньше чем за три минуты? — спросил Фредерик знакомого химика, встретившегося с ним на улице Пьера Кюри.

Химик только развел руками — это было далеко за пределами возможностей химии. Но дочь и зять Марии Кюри недаром были ее учениками. Они сами придумали новый метод и, проделав-таки химический анализ меньше чем за три минуты, точно установили природу нового элемента.

Принцип метода был необычайно остроумен. К продукту распада алюминия добавили обычный нерадиоактивный фосфор. Атомы обоих фосфоров ведут себя совершенно одинаково, и, так как фосфора теперь много, реакция идет гораздо быстрее. Фосфор теперь легко обнаружить обычными методами химии, пригодными для больших количеств вещества. Вся операция проделывается за три минуты. Радиоактивный фосфор всюду следует за обычным фосфором, а если поднести пробирку с такой смесью к счетчику, то есть измерительному прибору, регистрирующему радиоактивный распад, то атомы радиоактивного изотопа сразу выдают свое присутствие. Они как бы говорят щелчками счетчика: «Мы здесь! Мы здесь!»

Если бы при бомбардировке получился не фосфор, а другое вещество, оно бы не последовало всюду за фосфором, а осталось бы в других продуктах химических реакций.

Ограничивается ли новое явление только алюминием? Жолио-Кюри попробовали закрыть окошко камеры Вильсона вместо алюминия пластинкой бора, затем магния. Они облучали бор или магний альфа-частицами, потом — это было самое поразительное! — убирали источник альфа-лучей и продолжали наблюдать, как на сером фоне поля зрения камеры Вильсона появлялись четкие следы испускаемых частиц: радиоактивность была создана искусственно.

«Впервые и окончательно была установлена возможность создать вызванную внешней причиной радиоактивность определенных атомных ядер, которая сохранялась в течение измеримого времени и после устранения возбудившей ее причины», — написали Жолио-Кюри в докладе, представленном ими в Парижскую Академию наук 15 января 1934 года.

Через несколько дней почта доставила им письмо из Кембриджа. Резерфорд поздравлял молодых французов с открытием того, что он искал на протяжении всей своей деятельности.

«Я в восторге от Ваших опытов, — писал Резерфорд. — Поздравляю Вас с проделанной работой, которая позднее приобретет огромное значение».

До тех пор считалось, что радиоактивность — это исключительное свойство нескольких элементов, располагающихся в самом конце таблицы Менделеева. И вот теперь Жолио-Кюри показали, что можно искусственно создать радиоактивный элемент, а дальше, после того как он создан, процесс его распада ничем не отличается от естественного. Оказалось, что радиоактивными могут быть изотопы любого элемента независимо от того, каково место этого элемента в периодической системе. Не нужно доставать дорогой уран, радий или полоний, можно сделать радиоактивными обычный алюминий или кобальт.

Когда-то Ланжевен писал, что открытие радиоактивности сыграло для человечества такую же роль, как открытие огня. Продолжим сравнение: только открытие искусственной радиоактивности действительно дало этот огонь в руки человека.

Лавина открытий последовала за первым сообщением Жолио-Кюри в январе 1934 года. Во Франции, Италии, Советском Союзе, Англии, США — везде бомбардировали элементы альфа-частицами, нейтронами и получали новые радиоэлементы. Не прошло еще и года, как 14 ноября 1934 года, докладывая об искусственной радиоактивности на конференции Французского физико-химического общества в Париже, Ирен и Фредерик смогли указать, что теперь уже известно более пятидесяти новых радиоэлементов. Радиоэлементы и их изотопы стали доступными физикам, медикам, техникам.

Великое открытие принесло супругам Жолио-Кюри всемирную славу. Они оба получили ордена Почетного легиона и почетную премию Парижской Академии наук, а 1935 год принес новое волнующее известие: творцы искусственной радиоактивности были награждены Нобелевской премией.

Автограф части текста нобелевской речи Ф. Жолио-Кюри.

Четырнадцатилетней девочкой Ирен присутствовала в Стокгольме при награждении ее матери второй Нобелевской премией. Прошло двадцать четыре года — и вот в том же зале в Стокгольме шведский король вручил Нобелевскую премию Ирен Кюри и Фредерику Жолио. Увы! Марии Кюри уже не было с ними. Последние месяцы жизни Марии Кюри были озарены радостью открытия искусственной радиоактивности. Она могла видеть, как вырос созданный ею институт, которым она руководила до последнего дяя.

Мария Кюри умерла в июле 1934 года, за несколько месяцев до получения Нобелевской премии ее детьми.

«Для нашего покойного учителя Марии Кюри явилось бы, безусловно, большим удовлетворением дожить до тех дней, когда так вырос список радиоэлементов, столь славно открытый ею совместно с Пьером Кюри», — говорили Жолио-Кюри в своем нобелевском докладе в Стокгольме. Свой нобелевский доклад Фредерик Жолио закончил изумительным, пророческим предсказанием, что в будущем когда-нибудь искусственные радиоактивные превращения дадут возможность осуществить реакцию, которая будет распространяться как лавина, высвобождая громадное количество энергии. Тогда это казалось лишь смелой, безумной фантазией.

Он говорил:

— Те несколько сот различного рода атомов, которые составляют нашу планету, не являются раз навсегда созданными и существуют не вечные времена. Мы их воспринимаем так, потому что они еще существуют. Другие же, менее устойчивые, атомы уже исчезли. Из этих последних некоторые, вероятно, будут вновь получены в лабораториях. До настоящего времени удалось получить лишь элементы с короткой продолжительностью жизни, от доли секунды до нескольких месяцев. Чтобы образовать достойное упоминания количество элементов со значительно большей продолжительностью жизни, необходимо располагать очень мощным источником излучений. Можно ли надеяться на осуществление этой мечты?

— Если, обратившись к прошлому, мы бросим взгляд на успехи, которые были достигнуты наукой в ее все убыстряющемся движении, то мы вправе думать, что исследователи, конструируя или разрушая элементы по своему желанию, смогут осуществить ядерные превращения взрывного характера, настоящие цепные химические реакции.

— Если окажется, что такие превращения распространяются в веществе, то можно составить себе представление о том огромном освобождении полезной энергии, которое будет иметь место.

— Но если они охватят все элементы нашей планеты, то мы должны с тревогой думать о последствиях такого рода катастрофы. Астрономы иногда наблюдают, что звезда средней величины яркости внезапно возрастает по величине; звезда, невидимая невооруженным глазом, становится сильно светящейся и видимой без инструмента. Это появление новой звезды. Такое внезапное увеличение яркости звезды, быть может, вызвано подобными же превращениями взрывного характера, которые предвидит наше воображение. Быть может, исследователи попытаются осуществить такого рода процессы, причем они, как мы надеемся, примут необходимые меры предосторожности.

Впервые термин «цепная реакция» был применен к будущим, еще не осуществленным ядерным превращениям. Это удивительное, гениально смелое предсказание Фредерик Жолио повторил через полгода в Москве в своем докладе об искусственной радиоактивности на первом Менделеевском чтении.

В МОСКВЕ

— От имени Академии наук и Менделеевской комиссии позволю себе приветствовать Фредерика Жолио и Ирен Жолио-Кюри как представителей ученых дружественной нации. Добро пожаловать в нашу страну! — этими словами седой академик Николай Семенович Курнаков открыл 29 сентября 1936 года первое Менделеевское чтение в Москве.

Большая физическая аудитория МГУ заполнена до отказа. Скамьи, поднимающиеся амфитеатром, лестницы, проходы забиты битком. Слушателей больше восьмисот. В первых рядах поверенный в делах Франции, народный комиссар просвещения, академики А. Е. Ферсман, С. И. Вавилов, Н. Д. Зелинский, А. Н. Фрумкин, Л. И. Мандельштам, А. А. Байков. Профессора, студенты — все хотят увидеть и услышать родителей искусственной радиоактивности.

Академик Абрам Федорович Иоффе, много раз встречавшийся с Марией Кюри на Сольвеевских конгрессах, знакомит слушателей с научной биографией супругов Жолио-Кюри:

— Открытие супругов Жолио привело к открытию большего числа новых атомов, чем все то, что было известно Менделееву. Искусственная радиоактивность дала, таким образом, новый смысл системе Менделеева как системе возможных устойчивых атомных ядер. Нельзя было выбрать лучшего автора для первого чтения, связанного с именем Д. И. Менделеева, чем Фредерик Жолио.

— Через 35 лет Ирен Кюри и Фредерик Жолио, открыв искусственную радиоактивность, продолжили и повторили историю Марии Склодовской и Пьера Кюри, открывших радий. За открытием радия последовало еще около сорока радиоактивных элементов; за радиофосфором супругов Жолио — более ста неустойчивых атомов. Оба эти открытия связаны между собой прямой преемственностью. Тридцать пять лет настойчивой работы над радием создали лучшую школу радиоактивности, в которой выросли супруги Жолио. С тем же энтузиазмом, с теми же передовыми политическими идеалами, с тем же талантом, которые типичны были для супругов Кюри, супруги Жолио открыли следующую блестящую страницу истории науки. Она перед вами.

Профессор Игорь Евгеньевич Тамм переводит на, русский язык живую речь Фредерика Жолио:

— В течение последних лет совместные усилия физиков и химиков, направленные на штурм бесконечно малой частицы — атома, изменили в очень короткий срок наше представление о материи. Редко наука развивалась столь быстро, и многие исследователи были этим временно смущены. Большинство из них сумело, однако, удачно реагировать на этот бурный поток фактов. Их удалось освоить на благо науки и человечества.

Яркими, смелыми штрихами Жолио рисует картину открытий последних лет.

— В настоящее время, — сообщает он, — умеют создавать уже больше шестидесяти новых радиоэлементов, то есть они своей численностью превосходят естественные радиоэлементы. Применения искусственной радиоактивности уже неисчислимы. Правительство Франции отпустило недавно значительные кредиты на развитие этих работ.

Медицина, техника широко снабжаются радиоактивными изотопами. Биология, геология, металлургия — везде применяется радиоактивное излучение. Открытие искусственной радиоактивности — это начало новой эпохи в физике и технике.

Фредерик Жолио молод и счастлив. Всего лишь за девять лет скромный лаборант стал ученым с мировой известностью. Жизнь щедро раскрывается перед ним. И не только слушатели, но и сам он еще не знает, какое пророческое предвидение таится в заключительных словах его речи:

— Если, обратившись к прошлому, мы бросим взгляд на успехи науки, достигнутые в ее все возрастающем движении, мы будем вправе полагать, что исследователи, разрушающие и создающие элементы по своему желанию, найдут способ осуществить настоящие превращения взрывного характера, причем одно такое превращение будет вызывать несколько других.

— Если такие превращения станут распространяться в материи, то можно представить себе, какое громадное количество могущей быть использованной энергии при этом выделяется. Но, увы, если эта «зараза» охватит все элементы нашей планеты, мы должны с опасением предвидеть последствия такой катастрофы.

— Можно с тревогой задать себе вопрос: каковы будут последствия, если положить начало возможности осуществления подобных процессов?

Он повторил почти дословно то, что говорил в нобелевской речи. Но две самые последние фразы были сказаны по-другому. В Стокгольме он говорил осторожно о том, что исследователь, быть может, осуществит такую реакцию и примет, надо думать, меры предосторожности. А теперь, всего лишь через несколько месяцев, он поставил вопрос:

— И если когда-нибудь исследователь найдет способ вызвать такие превращения, то попытается ли он сделать опыт?

И ответил сам, как бы намечая путь:

— Думаю, что он этот опыт осуществит, так как исследователь пытлив и любит риск неизведанного!