Глава третья ДЕЙСТВИТЕЛЬНЫЙ ЧЛЕН ИНСТИТУТА

We use cookies. Read the Privacy and Cookie Policy

Оказавшись в ЛФТИ, одном из лучших физических центров СССР того времени, Курчатов с головой окунулся в дело, увлекся экспериментами, необходимыми развивающемуся народному хозяйству и оборонной промышленности страны. Первые семь лет, с 1925 по 1932 год, Игорь Васильевич многократно переключался с одной темы на другую. Об этом свидетельствует перечень выполненных им научных работ: 1) исследования в области физики диэлектриков; 2) нелинейные свойства проводников; 3) разрядники для высоковольтных линий; 4) исследования сегнетоэлектриков; 5) начальные работы в области ядерной физики[100]. При этом он всегда искал научную проблему, соизмеримую с его природными возможностями.

Первые работы Курчатов выполнил в ЛФТЛ. Они были посвящены физике кристаллов, которая интересовала Иоффе с точки зрения ее технической перспективы, связанной с возможностью научного обоснования электротехники изолирующих материалов. Здесь оказался востребованным опыт, полученный Курчатовым в Баку в работе с З. Лобановой при измерениях толщины тонких слоев на алюминиевых пластинках. Иоффе размышлял о возможности создания малогабаритных высоковольтных аккумуляторов в духе соображений, высказанных Курчатовым и Лобановой в их бакинской статье «Об электролизе при алюминиевом аноде». Иоффе надеялся создать изоляцию нового типа — тонкослойную. Ожидалось, что результаты работы по тонкослойной изоляции приведут к перевороту в изоляционном деле и в электротехнике вообще[101].

Работы Курчатова позволяют проследить за развитием его исследований по проблеме тонкослойной изоляции. Его труды посвящены не просто вопросам новейшей физики, а проблемам, имевшим прикладное значение для народного хозяйства и обороны. В надежных малогабаритных аккумуляторах особо нуждались танковая промышленность и военное судостроение. К сожалению, надежды, которые Иоффе возлагал на тонкослойную изоляцию, не оправдались. Подтвердить экспериментально начальные результаты опытов о повышенной прочности тонких слоев диэлектриков не удалось и пришлось отказаться от технического воплощения идеи высоковольтного аккумулятора. Но выполненные работы все же обогатили технику электроизолирующих материалов, поскольку позднее в ЛФТИ были получены и изучены новые, технически важные изоляционные материалы — стирол, эскапон и др.[102]

Часть работ Курчатова была связана с изучением применимости диэлектриков в промышленности и на строящихся электростанциях. Здесь он настолько напряженно работал с К. Д. Синельниковым, А. К. Вальтером и П. П. Кобеко, что Иоффе летом 1927 года принудительно отправил их в двухмесячный отпуск. Приказом № 2282 от 5 июня 1927 года он «уволил» всех троих «вследствие большой переработки, связанной с работами по высоковольтной изоляции»[103]. Итоги экспериментов молодые исследователи совместно изложили в серии статей в «Журнале российского физико-химического общества», посвященных поляризации диэлектриков, изучению их электрической прочности, определению механизма пробоя твердых диэлектриков.

Практически нет ни одной работы Курчатова этого времени, которая не заканчивалась бы публикацией в научных изданиях. У него, по признанию современников, было «легкое перо», а директор Иоффе поощрял этот талант своих сотрудников. Так, в 1928 году по предложению Абрама Федоровича Курчатов с Синельниковым написали главу «Электропроводность» и раздел «Диэлектрическая постоянная» для книги «Таблица физических констант». В «Технической энциклопедии» была опубликована статья Курчатова об электрическом разряде, а в довоенном издании пятитомного Физического словаря — его статья о сегнетоэлектричестве. В 1930 году в серии «Наука и техника» была издана научно-популярная книга Курчатова «Электрическая прочность вещества»[104], главы которой являются примером блестящего изложения автором основ учения о прохождении тока через диэлектрики, а также умелого отбора материала.

Исследуя в 1927–1928 годах высоковольтную поляризацию, а в 1927–1933 годах униполярную проводимость диэлектриков, Курчатов выполняет новаторские работы по физике и технике варисторов — «саморегулирующихся сопротивлений», в 1929–1933 годах экспериментально изучает коронный разряд и сегнетоэлектрики. В те годы полупроводники становятся одним из основных объектов его исследований. Их необыкновенные свойства сулили громадные технические приложения как в электро- и радиотехнике, так и в области прямого преобразования тепловой и солнечной энергии в электрическую, а значит, в повседневной практической жизни и в решении оборонных задач. В стране на базе индустриализации шла техническая модернизация Красной армии, росло число электростанций, увеличивалась протяженность высоковольтных линий электропередачи. Для нормального функционирования последних остро необходимы были средства защиты от импульсных перегрузок. Решая проблему защиты высоковольтных линий, Курчатов, его ученики и сотрудники (Н. А. Ковалев, Т. З. Костина, Л. И. Русинов, А. З. Шакиров) разработали первые отечественные твердотельные специальные разрядники с саморегулирующимся сопротивлением. Такие разрядники изготовляли тогда лишь в Германии и США. Курчатов поставил задачу создать разрядники, не уступающие зарубежным, и успешно ее решил[105]. Он выявил требования, которым должен соответствовать материал, используемый в разрядниках, и в результате установил, что основным материалом для изготовления является карборунд — карбид кремния[106]. На нем Курчатов и его сотрудники провели комплекс необходимых исследований и доказали практическую пригодность твердотельного разрядника, изготовленного на карборундовой основе, его способность отводить от линий передач токи перегрузок и сразу после этого переходить в режим «ожидания», не связанный с токами утечки. Опыты показали, что долговечность (продолжительность работы) разрядников в естественных условиях составит более пяти лет[107].

Таким образом, Курчатов по праву может быть назван основоположником отечественных исследований по физике полупроводниковых резисторов, не только изучившим их физические характеристики, но и заложившим основы технологии этих приборов, выпускаемых промышленностью и ныне.

К началу 1930-х годов 27-летний ученый становится признанным авторитетом в этой области прикладных исследований. В сентябре 1931 года его, как лучшего знатока проблемы, избирают председателем оргкомитета Первой Всесоюзной конференции по физике полупроводников в Ленинграде. Курчатов сделал там три доклада. В обзорном докладе по твердым выпрямителям он изложил результаты своих, совместных с Кобеко и Синельниковым, работ. Во втором докладе им были рассмотрены проблемы твердых фотоэлементов, а в третьем — саморегулирующихся сопротивлений. Теоретические результаты экспериментов были изложены в двух обширных журнальных публикациях 1933 и 1935 годов[108]. Глубокое понимание проблем, часть которых только-только входила в физику тех лет, свидетельствует и о высокой теоретической подготовленности Курчатова, его умении увязать теорию с экспериментом, с требованиями и запросами практики. Особой заслугой Курчатова-исследователя являлось одновременное решение «приборной» проблемы эксперимента. В первой половине 1930-х годов в лабораториях отсутствовали ставшие позднее привычными приборы и оборудование. Курчатову и всем, с кем он работал, многое приходилось делать своими руками: рассчитывать, конструировать, опробовать. Возникавшие сложные технические и организационные вопросы Курчатов-инженер разрешал, вникая в каждую деталь аппаратуры, разрабатываемой и подготовлявшейся им лично для экспериментов. А. Ф. Иоффе высоко оценивал эти работы. В 1961 году он писал: «В исследованиях Курчатова, Кобеко, Синельникова по механизму электрического пробоя твердых диэлектриков имеется большой материал, не потерявший своей ценности и до настоящего времени»[109].

Опыт работы Курчатова с высоковольтными установками вскоре оказался необычайно полезным на другом этапе его исследований в довоенные годы. В конце 1929 года он, занимаясь изучением электрических свойств диэлектриков и поисками материалов для конденсаторов, обратил внимание на поведение сегнетовой соли в определенном интервале температур. Вместе с сотрудником лаборатории Павлом Павловичем Кобеко, ставшим его другом, Игорь Васильевич приступил к изучению явления аномально высокой диэлектрической проницаемости сегнетовой соли. В этой работе участвовал и брат Курчатова Борис, поступивший на работу в ЛФТИ после окончания химического факультета Казанского государственного университета. К проведению исследований их побудил повышенный в то время интерес к данным вопросам, обнаруженный в зарубежных исследованиях прикладного характера периода Первой мировой войны П. Ланжевена, К. К. Шидловского, Э. Резерфорда и др.[110]

Сегнетоэлектрические свойства сегнетовой соли в 1920–1924 годах открыл американский физик Дж. Валашек. Первые систематические исследования физических свойств этого вещества были выполнены в ЛФТИ под руководством Курчатова. В первой работе по сегнетоэлектрикам, опубликованной в марте 1930 года[111], Курчатов и Кобеко отмечали, что на аномальные свойства сегнетовой соли им указал ученый-акустик Н. Н. Андреев, разрабатывавший вопросы пьезоэлектричества. Вскоре Курчатов выявляет новую природу явления: сегнетова соль есть электрический аналог ферромагнетиков, первой в новой группе диэлектриков, названных им сегнетоэлектриками. Курчатов с сотрудниками исследовали физические свойства кристаллов сегнетовой соли, выяснили вторичное происхождение явления ее поляризуемости, изучили изоморфные смеси сегнетовой и аммонийно-натриевой соли винной кислоты. Выявленное разнообразие свойств этих кристаллов в зависимости от концентрации компонентов явилось убедительным доказательством открытия И. В. Курчатовым, Б. В. Курчатовым и П. П. Кобеко новой группы диэлектриков.

Курчатов использовал в работах термины «сегнетоэлектрики», «сегнетоэлектричество», поскольку в то время казалось, что необычные физические свойства сегнетовой соли присущи только материалам типа сегнетовой соли. Когда были открыты многочисленные представители других типов кристаллов, обладающие подобными свойствами, эти термины перестали быть адекватными, поэтому стали использовать термины «ферроэлектрики», «ферроэлектричество», более соответствующие сути явления.

Во времена Курчатова физика сегнетоэлектричества только зарождалась. Существовали большие трудности при интерпретации экспериментальных данных. Естественно, Курчатов не мог предвосхитить все достижения современной физики сегнетоэлектричества, но, как отмечается в трудах его соратников[112], многие предлагаемые им объяснения новых экспериментальных результатов оказались довольно близкими к современным концепциям.

Специалисты отмечали также тщательность постановки Курчатовым экспериментов, стремление учесть многие факторы и вопросы, которые и сегодня находятся в центре внимания физиков, занимающихся сегнетоэлектричеством. По результатам исследований Курчатов публикует 11 статей и первую в мире по данной теме монографию «Сегнетоэлектрики». Она вышла в 1933 году на русском и в 1936 году на французском языке с предисловием А. Ф. Иоффе[113] и стала настольной книгой ученых и специалистов-практиков, занимавшихся данной проблемой. Вопросам технического применения сегнетоэлектриков Курчатов посвятил восьмую главу этой книги, названную «Некоторые технические применения сегнетоэлектриков». Он указывал, что на основе сегнетовой соли изготовлены микрофоны, которые в дальнейшем были усовершенствованы: в них использовали пьезоэлектрические свойства соли[114].

Созданное Курчатовым учение о сегнетоэлектриках было положено в основу новой области науки, которая успешно развивалась в России и за рубежом[115]. Сегнетоэлектрики до сих пор играют важную роль в гидролокации, гидроакустике, других областях как преобразователи механических колебаний в электрические[116]. О существенном значении этих работ Курчатова для техники и обороны страны говорится в монографии А. П. Гринберга и В. Я. Френкеля[117]. И. В. Обреимов в воспоминаниях о Иоффе писал: «Я вспоминаю ту нежность, ласковость, с которой Абрам Федорович относился к работам Курчатова по сегнетоэлектричеству»[118]. Ю. Б. Харитон называл эти работы Курчатова «изящными и красивыми»[119]. Специалисты считали, что техническое применение сегнетоэлектриков может открыть совершенно новые перспективы. «Если предыдущий период электротехники можно по праву называть электротехникой меди и железа, — отмечал В. П. Вологдин, — то следующий за ним период может быть назван электротехникой диэлектрика»[120].

Исследования Курчатова по сегнетоэлектрикам вызвали большой интерес и за рубежом. В 1929–1930 годах академик Иоффе обсуждал их результаты с физиками Германии и Голландии, в частности, с выдающимся ученым П. С. Эренфестом. В 1932 году он докладывал об этих работах в Париже[121]. В 1928 году о них впервые услышали в Великобритании. Находившийся там К. Д. Синельников тогда написал Курчатову: «Эти работы могут открыть новую эпоху в диэлектрических константах»[122]. Достижения Курчатова в области изучения сегнетоэлектриков явились не просто очередным успехом в его научной деятельности. Его открытие вошло в историю мировой науки, а имя молодого ученого стало широко известно в научном сообществе.

Новые работы Курчатова, как правило, базировались на предыдущем, накопленном до него опыте и собственных методиках, отличавшихся оригинальностью, простотой, основательностью, доскональностью и надежностью. По выражению его ученика Г. Н. Флерова, они строились по методу «сургуча и веревочки»[123]. В этом отношении интересны и замечания Синельникова о курчатовской организации работы, о чем он пишет в письмах Курчатову из кембриджской лаборатории Резерфорда: «Методы Гарри (Игоря. — Р. К.) работы с вакуумом лучше английских»; у англичан нет «той спаянности работающих, того настроя и подъема, как в группе Курчатова в Ленинградском физтехе. У англичан каждый за себя и для себя… не хватает заинтересованности… живого обмена мнениями, ругани и споров»[124].

В 1930 году Курчатов уже руководит большим физическим отделом. В 1934 году он был утвержден в звании действительного члена института. В 1931–1932 годах, одновременно исследуя полупроводники, пишет в соавторстве с Д. Н. Наследовым, Н. Н. Семеновым и Ю. Б. Харитоном книгу по проблеме электронных явлений[125]. В 1930 году он с сотрудниками создает конденсатор переменной емкости с диэлектриком из сегнетовой соли и публикует статью о возможностях использования уникальных свойств сегнетоэлектриков. 31 января 1934 года В. П. Вологдину, И. В. Курчатову, П. П. Кобеко и Р. В. Львовичу был выдан патент № 34 414 на изобретение «Конденсатор переменной емкости»[126]. В разделе «Предмет патента» изобретатели высказали прогноз, что конденсатор найдет свое применение при создании отечественных радиоприемников и электрических приборов.

Все исследования Курчатова этого периода связаны с важными техническими проблемами и направлены на решение прикладных задач мирного и военного значения, что сулило ему как ученому блестящую перспективу[127]. Но Курчатов начал отходить от работ по физике сегнетоэлектричества и с конца 1932 года переключился на изучение атомных ядер. Некоторое время он вел два научных направления одновременно. Уже вплотную занимаясь ядерной физикой, подготовил сокращенный вариант упоминавшейся выше монографии, изданной во Франции, и несколько статей по результатам предшествовавших исследований сегнетовой соли. В их числе в соавторстве с А. З. Шакировым (аспирантом Курчатова в ЛФТИ) была написана статья об инверсии поляризации сегнетоэлектриков[128]. Последние две статьи об исследованиях по сегнетоэлектричеству — «Сегнетова соль» и «Сегнетоэлектрики» — Курчатов написал в 1938 году для четвертого тома «Физического словаря», изданного в том же году.

С тех пор исследования по сегнетоэлектричеству в ЛФТИ не прекращались. Директор современного ФТИ в Санкт-Петербурге, носящего имя его создателя академика А. Ф. Иоффе, лауреат Нобелевской премии по физике Ж. И. Алферов в выступлении на научном совете, посвященном памяти Курчатова, в 2008 году отметил, что настоящие достижения в этой области исследований и дальнейший их прогресс были бы невозможны без открытия сегнетоэлектриков и их уникальных свойств[129].

Игорь Васильевич находился в постоянном научном поиске. Одновременно с сегнетоэлектричеством он исследует так называемый «коронный разряд». В архиве ЛФТИ нами обнаружены документы, связанные с выполнением Курчатовым и его сотрудниками М. А. Еремеевым, Г. Я. Щепкиным и В. И. Бернашевским в 1932 году по договору с отделом военных изобретений Народного комиссариата по военным и морским делам научно-исследовательской работы о возможности применения явлений солнечной короны в качестве источника ультрафиолетовых лучей[130]. Сохранились копии писем и отчетов Курчатова о закрытой работе № 606 «Опыты короны в воздухе», отправленные заказчику[131]. О важности этого заказа свидетельствует то, что работа проводилась ежедневно по вечерам, поэтому рабочий день был увеличен до десяти часов.

В то же время Курчатов являлся начальником входивших в отдел группы лабораторий по изучению строения вещества. В одной из них он изучал карборундовые саморегулирующиеся сопротивления. Есть основания полагать, что именно в связи с этим Курчатов заинтересовался явлениями короны, игравшими существенную роль в функционировании линий высоковольтных электропередач, и согласился экспериментально исследовать эти явления. В предварительном ответе Управлению связи РККА он сообщил, что считает поставленные вопросы интересной по своей новизне научной проблемой[132].

В сравнительно короткий срок (с середины марта до середины октября 1932 года) им с небольшой группой сотрудников был выполнен значительный объем исследований по свечению короны. Много труда пришлось вложить в изучение иностранной, прежде всего немецкой, литературы. В частности, были проштудированы все вышедшие к тому времени 72 тома немецкого журнала «Zeitschrift fur Physik», журналы «Archiv fur techn. Physik» и «Archiv fur Elektrotehnik». Результаты исследований об использовании явления короны для оборонных целей Курчатов доложил на совместном совещании с заказчиком в Ленинграде 21 сентября 1932 года. Содержание работы курчатовской группы было изложено в шести отчетах. Авторы подчеркивали, что работа может иметь главным образом гражданское применение и представляет интерес для народного хозяйства. О ее военном значении в отчетах умалчивалось, возможно, из соображений секретности[133].

Необходимо отметить еще одну работу И. В. Курчатова и П. П. Кобеко этого периода, имевшую важное значение для промышленности, в том числе военной. В 1930 году они опубликовали в журнале «Физика и производство» отчет в виде статьи о тесных контактах ученых с промышленностью, где, в частности, сообщали об исследованиях электрических свойств изолирующих изделий из эбонита, изготовленных заводом «Красный треугольник»[134]. Курчатов с сотрудниками лаборатории, проанализировав продукцию эбонитового цеха завода, обнаружил, что на заводе не производили контроль электроизолирующих свойств выпускавшейся продукции. Одно из последующих исследований, проведенных в ЛФТЛ, имело целью «дать возможность цеху ориентироваться в нужных для него размерах лаборатории, а также возможных научно-исследовательских задачах»[135].

Из публикации следует, что Кобеко и Курчатов непосредственно участвовали в организации заводских лабораторий, решая попутно сложные, сугубо технические задачи по определению пробивных напряжений листового эбонита, по совершенствованию технологии процессов вулканизации каучука и др. «Мы надеемся, — писали они, — что затронутые в этой статье вопросы будут решены уже в лаборатории завода; проект лаборатории нами разработан и представлен… администрации „Красного треугольника“»[136].

Подытоживая этот энергичнейший и продуктивнейший период деятельности середины 1925-го — начала 1930-х годов И. В. Курчатова в ЛФТИ под руководством А. Ф. Иоффе, следует признать, что в эти годы Игорь Васильевич внес выдающийся вклад в разработку проблем физики твердого тела, во внедрение этих научных достижений в народное хозяйство страны и в ее военную промышленность. Открытый им новый класс веществ — сегнетоэлектрики — применяли в радиолокации и гидроакустике — отраслях, тесно связанных с техническим оснащением армии и флота. С конца 1932 года Курчатов, продолжая работы в области физики твердого тела, одновременно все больше внимания и времени уделяет исследованиям атомного ядра.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК