31 августа 1980 года

We use cookies. Read the Privacy and Cookie Policy

31 августа 1980 года

Сегодня день рождения у моего командира, Леши Попова. Ему исполнилось 35 лет. Поздравления начались с утра. В ЦУП приехали А. Леонов и Ю. Малышев. Они поздравили Лешу. В следующем сеансе связи появились все наши домашние и Юра Романенко. Затем приезжали В. Коваленок, Г. Гречко, В. Аксенов и Г. Стрекалов. Все они очень хорошо отзывались о нашей работе и поздравляли именинника. Корреспондент Всесоюзного радио Петр Пелехов прочитал нам свой, как мы назвали, «радиошантаж», скомпонованный из наших с ним радиопереговоров, но специально смонтированных. Получилось очень смешно. Вообще, на протяжении всего полета мы два раза в неделю давали ему интервью или отвечали на его вопросы. Петр всегда готовился к таким передачам, и они, как мне кажется, у него получались интересными.

Сегодня заметили, что в установках «Светоблок», в которых росла подопытная трава арабидопсис, появились бутоны. Раньше до бутонов дело не доходило. «Светоблок» — это цилиндр, размещенный под источником света, в котором растет арабидопсис. С объемом станции он связан через маленькое отверстие, и в блоке не происходит смены атмосферы. Таким образом, влияние человека и техники на растение сведено к минимуму. Может быть, поэтому и появились бутоны.

В минувшие дни мы с интересом проводили наблюдения с бортовым субмиллиметровым телескопом. Все предыдущие экспедиции с ним также работали. Но прошло время. Ухудшились характеристики приемного зеркала под влиянием факторов космического полета. Добавлю два слова по его устройству. Излучения попадают на вогнутое зеркало диаметром полтора метра. Дальше изображение передается на собирающее зеркало и с него с помощью световодов передается на приемник. Их два. Один из антимонида индия, другой из германия. Принимая излучение определенной длины волны, приемник изменяет свое электрическое сопротивление, а оно через специальные усилители фиксируется.Здесь, правда, есть один небольшой нюанс. Кристаллы реагируют на излучение, будучи охлажденными до температуры минус 269 градусов. И вот здесь встала проблема создания на борту холодильной установки, способной создать такую температуру. Даже на Земле это не очень легко, но на Земле ничто не ограничивает. Сколько угодно электроэнергии и любые объемы. Другое дело борт станции. На все существуют ограничения, но тем не менее такая установка была создана и успешно функционировала.

Другую же проблему — ухудшение характеристик приемного тракта — пришлось исправлять изготовлением специальных синхронных усилителей сигнала. Их нам привезли «Тереки», мы их ввели в схему и провели несколько наблюдений. Для ученых большой интерес представляют излучения в диапазоне от нескольких микрон до двух миллиметров. Это так называемый субмиллиметровый диапазон. В этом диапазоне удобно изучать холодные тела с температурой от нуля до приблизительно ста градусов Кельвина. Волны в этом диапазоне несут сведения об атомах и молекулах, рассеянных в межзвездном пространстве. Изучая спектр субмиллиметрового излучения, можно проводить «химический анализ» космического пространства. Другое направление использования этого диапазона — это фиксация рождения новых звезд. На небе они становятся видимыми лишь после того, как разогреются до сверхвысоких температур. А исследования в этом диапазоне позволяют зафиксировать рождение звезд задолго до того, как они достигнут таких температур. С помощью субмиллиметрового диапазона можно фиксировать газопылевые сгущения, в которых образуются новые звезды, размеры таких образований и их плотность. Все это богатейший материал для космологии.

В будущем, я думаю, для таких наблюдений будут созданы специальные модули, которые будут вести постоянные наблюдения. Ведь проводимый на станции «Салют-6» цикл работ с субмиллиметровым телескопом — это первая ласточка, и сейчас получение каких-то сенсационных открытий не самое важное. Важно создать методики, уточнить требования к подобным приборам, заложить фундамент для создания будущих приборов, работающих на беспилотных спутниках-автоматах.

Параллельно с этими работами у нас попеременно работали две печи — «Кристалл» и «Сплав». Попеременно потому, что процесс плавки очень энергоемкий. Мы провели три длительные плавки на установке «Сплав». Две — по пять суток и одну — длительностью двое с половиной суток. В предыдущем полете, вместе с Володей Ляховым, мы получили два монокристалла. Проводились подобные опыты и еще раньше, начиная с первой длительной экспедиции. Но на весь процесс отводилось 10—12 часов. Исследовав те первые образцы, ученые увидели, что из общей массы твердого раствора примерно десятая часть представляла собой монокристалл. Никакой теории в этом деле пока нет. Есть предположение, что на образования кристаллов влияют особенности конвекционного движения жидкости, действие сил поверхностного натяжения, влияние микрогравитации на станции, время кристаллизации. И вот предположили, что для получения монокристалла нужно увеличить время кристаллизации. А программа исследований составляется заранее, и в ходе полета существенно корректировать ее не удастся. Одно цепляется за другое и, выделив время для одного, надо что-то исключить, что уже заранее готовится. Поэтому только сейчас и было выделено время для таких длительных экспериментов. Мы два полученных образца отправили на Землю с «Тереками». И вот, проведя на Земле исследование полученных образцов, сделав шлифы, ученые убедились в однородности полученных в невесомости кристаллов. Это очень важный результат, и нам приятно было узнать, что он достигнут при нашем участии.

А оценить перспективу исследований в этом направлении сейчас, наверное, трудно. Мне кажется, что в будущем космическое материаловедение даст людям Земли новые материалы с совершенно уникальными свойствами, что позволит создать новые приборы для народного хозяйства, науки и техники.