3. ТЕОРЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ ЕВРОПЕЙСКИХ ХИМИКОВ

We use cookies. Read the Privacy and Cookie Policy

3. ТЕОРЕТИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ ЕВРОПЕЙСКИХ ХИМИКОВ

Бутлеров отправился в Европу в 1857 году, в самом конце той «всемирноисторической эпохи», по характеристике В. И. Ленина, данной им в статье, посвященной памяти Герцена, «когда революционность буржуазной демократии уже умирала (в Европе), а революционность социалистического пролетариата еще не созрела»[2]

Последовавший за мрачными годами реакции 1857 год в Европе ознаменовался общеевропейским политическим и экономическим кризисом и началом нового подъема рабочего движения. Находившийся в Лондоне А. И. Герцен начал издавать в 1857 году «Колокол», сыгравший большую роль в истории революционно-демократической мысли. В России, с воцарением Александра II, стала распространяться легенда о либерализме нового царя. В подтверждение ее правительство дало молодым русским ученым возможность выезжать за границу, что было очень ограничено при Николае I, усиленно оберегавшем русскую интеллигенцию от «заразного дыхания» революционного Запада.

Бутлеров наравне с Менделеевым, Бородиным, Шишковым, Энгельгардтом, Сеченовым был одним из первых, воспользовавшихся возможностью ознакомиться с европейской наукой на месте.

Прибыв в августе 1857 года в Берлин и оставаясь здесь около двух недель, Александр Михайлович осмотрел лаборатории профессора Митчерлиха и приват-доцента Зонненштейна. Здесь он познакомился с употреблением светильного газа и газовых горелок. Газа в казанской лаборатории не было, и применение его в лаборатории произвело на Бутлерова выгодное впечатление.

Из Берлина Бутлеров поехал на Рейн, где посетил Висбаден, откуда в сентябре отправился в Бонн, чтобы посетить 33-й съезд немецких натуралистов и врачей.

В Висбадене Бутлеров видел лабораторию профессора Фрезиниуса, которая являлась учебно-химическим заведением: воспитанники его изучали аналитическую химию на практике. Во время осмотра этих лабораторий Александр Михайлович познакомился с их руководителями, однако более близко познакомился он с иностранными химиками в Бонне на съезде. Здесь же он встретил своего соотечественника — Леона Николаевича Шишкова. Пребывание в Бонне Бутлеров использовал для осмотра университетской лаборатории в Поппельсдорфе и для еще более интересного для него ознакомления с химическим заводом Марквардта, производившим в большом количестве ценные химические вещества.

После закрытия съезда Бутлеров поехал в Гейдельберг, оттуда в Швейцарию, а из Швейцарии в Италию. В этот переезд ему удалось, хотя и бегло, осмотреть лабораторию Фридриха Мора в Кобленце и в Гейдельберге — лаборатории Кекуле и Бунзена.

В лаборатории Бунзена на него произвели наибольшее впечатление приборы, изобретенные или усовершенствованные самим Бунзеном.

Швейцарские и итальянские лаборатории отличались только широким использованием светильного газа в химической практике.

Пробыв в Италии около полутора месяцев, Александр Михайлович отправился пароходом в Марсель, а затем в Париж, куда и прибыл в декабре, в начале зимнего семестра.

Париж представлял в то время наиболее интересный для химика центр как по курсам, читавшимся здесь, так и по многочисленным химическим лабораториям, устроенным очень разнообразно, соответственно характеру производившихся работ. Бутлеров посвятил Парижу большую часть своего пребывания за границей. Он оставался здесь почти безотлучно до мая 1858 года. Только на поездку в Лондон для осмотра лабораторий Бутлеров выбрал время, впрочем составившее не более десяти дней. Английские химики стояли в стороне от широких теоретических обобщений и заинтересовать русского ученого не могли.

В Париже Бутлеров работал в лаборатории Шарля Вюрца, единственной в то время лаборатории Франции, объединяющей молодые химические силы. Это была и по числу учеников значительная в Европе лаборатория.

Лаборатория Вюрца в Парижской медицинской школе привлекала не удобством, не величиной, не превосходством оборудования. Интерес химиков привлекал ее директор — известный французский химик Шарль Вюрц (1817–1884).

В лаборатории Вюрца Бутлеров провел два месяца. Здесь он произвел исследование йодистого метилена. Результаты его были доложены Парижской Академии наук и опубликованы в ряде химических журналов. Йодистый метилен уже был в руках многих химиков до Бутлерова, но они не определили его настоящего состава.

В начале мая 1858 года из Парижа Бутлеров отправился опять в Гейдельберг, где он слушал лекции Бунзена и Кекуле. Имя Роберта Бунзена (1811–1889), так же как имя Густава Кирхгофа (1824–1887), известно, в особенности, по открытию спектрального анализа. С его помощью Бунзену удалось открыть два новых элемента — цезий и рубидий.

Органической химии была посвящена только первая работа Бунзена, правда оказавшая большое влияние на развитие органической химии, а затем он работал почти исключительно в области неорганической химии.

Особенную популярность среди молодых ученых Бунзену снискала основанная им в 1855 году, в Гейдельберге лаборатория, из которой вышла группа известных химиков. Среди них были, между прочим, Август Кекуле (1829–1896) и Рихард Эрленмейер (1825–1909) — сверстники Бутлерова по возрасту и вступлению в научную жизнь, подобно ему уделявшие много внимания вопросам теории.

Бунзен был превосходным лектором, но знакомство Бутлерова со знаменитым профессором произошло уже тогда, когда тот плохо слышал, плохо видел своим единственным глазом — другой был потерян при занятиях со взрывчатыми веществами, к которым Бунзен имел слабость.

«Страдая забывчивостью, — говорит о нем И. М. Сеченов, — он часто являлся на лекцию с вывернутым ухом — сохранившимся до старости наследием школьного возраста. Когда в течение лекции взмахом руки профессора ушная раковина приходила в норму — это значило, что памятка сделала свое дело — опасный пункт не был забыт. Когда же, как это случалось нередко, ухо оставалось вывернутым, по окончании лекции молодая публика расходилась с веселыми разговорами о том, был ли забыт намеченный опасный пункт или забыто ухо. Бунзен был всеобщим любимцем, и его называли не иначе, как папа Бунзен, хотя он не был еще стариком».

По словам Бутлерова, лекции Бунзена «не отличались живостью и красотой изложения, но замечательны и чрезвычайно интересны по внутреннему содержанию». Слышанные им лекции о кислороде, водороде, хлоре и соляной кислоте «содержали множество тонких физико-химических замечаний, составлявших большею частью результат собственных опытов и наблюдений Бунзена».

Лекции по органической и теоретической химии, читанные приват-доцентом Бунзена Кекуле, заинтересовали Бутлерова ясностью и отчетливостью изложения, оригинальностью и новизной некоторых взглядов, введенных им в теоретическую часть органической химии.

Из Гейдельберга Бутлеров съездил в Мюнхен, чтобы послушать Либиха.

«Его аудитория, — замечает Бутлеров, — всегда наполнена, кроме студентов, множеством посторонних слушателей. Признанное всеми достоинство этих лекций заключается в мастерском изложении, но, к сожалению, Либих в то время уже мало обращал внимания на теоретическое развитие науки; он уже сошел в то время с того поприща, на котором приобрел заслуженную знаменитость, и это необходимо должно было отразиться на содержании его чтения».

В Мюнхене Бутлеров свел знакомство с профессором Петтенкоффером, имея в виду применить светильный газ в своей лаборатории. Петтенкоффер впервые организовал в больших размерах добывание газа из древесины. Бутлеров осмотрел небольшой газовый завод, устроенный по системе Петтенкоффера и снабжавший газом железнодорожную станцию.

Кроме того, через Петтенкоффера Александр Михайлович получил возможность на обратном пути из Мюнхена осмотреть еще газовый завод в Дармштадте, где весь город снабжался древесным газом.

Из Мюнхена началось обратное путешествие Бутлерова. По дороге он посетил Гиссен, Марбург, Кассель, Геттинген. В Гиссене он видел прославленную Либихом лабораторию, в Марбурге ему удалось взглянуть на лабораторию Кольбе. Наконец в Геттингене им были осмотрены лаборатории Вёлера.

В конце июня 1858 года Александр Михайлович уже был в Берлине и, проведя там несколько дней, поехал в Лейпциг, Дрезден и Прагу, а отсюда обратно в Берлин.

Наконец во второй половине июля он отправился через Штеттин в Петербург.

Мы вынуждены так подробно отчитаться в поездке Бутлерова за границу потому, что историки химии, вопреки действительному положению вещей, невероятно преувеличивают значение этой поездки в творческой истории Бутлерова и в истории создания структурной теории.

Судя по отчету, представленному Бутлеровым совету университета, в правдивости которого нет никаких оснований сомневаться, больше всего останавливало внимание Бутлерова оборудование лабораторий, в частности его интересовал вопрос о применении газа.

Что же представляла собой живая картина теоретических воззрений европейских химиков, с которой познакомился Бутлеров за границей, судя по его же отчету и другим известным нам документам?

Если сейчас ломоносовские представления о «нечувствительных частицах» легко усваиваются нами еще на школьной скамье, то в те годы, когда представление об атомах и молекулах только еще создавалось, только еще становилось исходным пунктом химических открытий и новых понятий, в потоке фактов и идей было не так-то легко разобраться.

Единой теории не существовало. Органическая и неорганическая химия, теперь различающиеся лишь практически, тогда развивались совершенно отдельно друг от друга. В таком существенно важном вопросе, например, как атомный вес углерода, химики расходились настолько резко, что одни считали его равным 12, а другие — 6. Чтобы как-нибудь примирить эти данные, Дюма предлагал, например, принимать первую цифру для углерода в органической химии, а вторую — для неорганической.

Не только вокруг этого вопроса шли ожесточенные споры и разногласия. Жерар, например, называл атомом химически сложного тела то, что Лоран называл его молекулой. Пришлось созвать специальный Всемирный конгресс химиков для того, чтобы установить хотя бы общую терминологию.

С установлением через сто лет после Ломоносова Дальтоном, Берцелиусом и Гей-Люссаком атомистической теории все тела, образующие видимый мир, стали рассматриваться как агрегаты мельчайших частичек, атомов различных элементов, представляющих разные формы проявления материи. Предполагалось, что атомы разных элементов соединяются между собою, повинуясь силе взаимного притяжения — химического сродства, и образуют, таким образом, сложную частицу химического соединения.

Изучение простейших химических соединений показало, что элементарные атомы обладают различной способностью к соединению друг с другом, В то время как атомы одних элементов соединяются только с одним атомом другого для образования вполне определенного химического соединения, существуют и такие элементы, атом которых способен соединяться с двумя, тремя и четырьмя атомами других. Отсюда возникло учение об атомности элементов, или валентности атомов, по которому атом каждого элемента обладает определенной предельной способностью к соединению с атомами других элементов. За единицу сравнения был принят атом водорода. Те элементы, один атом которых способен соединиться только с одним атомом водорода, получили название одноатомных, или одновалентных, другие, по тому же принципу — двухатомных, трехатомных и т. д.

Существование многоатомных элементов, способных соединяться с несколькими атомами других элементов, и объясняет образование сложных химических соединений.

Осваивание атомистических представлений давалось с трудом самим ученым. Еще труднее они усваивались студентами и широкой публикой. Для лекционных иллюстраций Кекуле предложил пользоваться изобретенными им моделями. Они состояли из разноцветных деревянных шариков, изображающих атомы, причем прутики, соединяющие шарики друг с другом, соответствовали единицам валентности. Соединяя эти шарики соответственным образом, Кекуле демонстрировал формулы химических соединений. При правильном их применении эти модели, конечно, приносили большую пользу. Однако многие химики возражали против такого рода наглядного метода на том основании, что он может создать неправильное представление о том, что атомы имеют шарообразную форму или что они связаны между собой некими стержнями.

Для этого, кстати сказать, были основания. Карл Шорлеммер в своей известной книге «Возникновение и развитие органической химии» рассказывает такой случай. Одного из учеников Дальтона, применявшего для этой цели квадратные дощечки различных цветов, попросили рассказать об атомной теории. Он ответил так:

— Атомы — это квадратные деревянные брусочки, изобретенные доктором Дальтоном…

Запутан был и вопрос о формулах, которыми принято выражать химическое соединение. Их по-разному писали и по-разному понимали. Окружая химический символ того или другого элемента черточками, предполагалось, что эти черточки говорят о том, как связаны отдельные атомы в молекуле. Но сущность связи оставалась неясной, и под этими черточками одни понимали силу притяжения, которой данный атом удерживает в связи с собой другие атомы и сам удерживается, а некоторые видели в этих черточках указания на способ расположения атомов в пространстве относительно друг друга.

Мало этого, по мнению одних, химические формулы такого рода выражают строение вещества, а по мнению других — лишь ход реакции соединяющихся элементов.

Необходимость договориться, согласовать мнения чувствовалась всеми. Первые попытки такого рода как раз и делались во время пребывания Бутлерова за границей. Существенно важным результатом этих попыток было установление четырехвалентности углерода, то-есть способности атома углерода удерживать в связи с собою четыре атома другого элемента, принятого за одновалентный, как, например, водорода.

Бутлеров, дружески общавшийся со всеми виднейшими химиками того времени и знакомившийся с их новыми работами еще до опубликования этих работ, приписывал честь первого указания на четырехвалентность углерода Кекуле. Но в действительности к тому же заключению, независимо друг от друга, почти одновременно пришли и Герман Кольбе (1818–1884), и Арчибальд Купер (1831–1892), и Эдвард Франкланд (1825–1899), как можно судить по их работам, посвященным развитию той же идеи.

Подобно тому как для кристаллизации перенасыщенного раствора достаточно бросить в него микроскопическую долю растворенного вещества, новые факты, установленные наукой, привели в ясность все догадки Бутлерова, осветили весь хаотический материал, накопленный к его времени органической химией.

Бутлеров начинает по-новому понимать химические превращения и с первых же шагов чувствует под собой твердую почву. Конечно, от установления четырехвалентности углерода до определенной и четкой теории строения молекулы еще очень далеко: надо еще установить характер и способ связи атомов в сложном химическом соединении, выяснить взаимное влияние атомов и прежде всего испытать новую теорию на проблеме изомерии, выяснив причины и виды ее.

Одно было, однако, несомненным для Бутлерова: и строение молекулы органических веществ, и самая многочисленность углеродистых соединений, заставившая разделять химию на органическую, или химию углерода, и на неорганическую, и самая сложность органических соединений, и трудность их изучения — все это объясняется двумя простыми, твердо установленными фактами: углерод в подавляющем большинстве соединений четырехвалентен, а атомы углерода способны вступать в соединение не только с атомами других элементов, но и друг с другом в самых разнообразных и неожиданных сочетаниях, но не случайных.

И вот в то время когда среди европейских химиков господствовало еще мнение, что никому и никогда не удастся открыть того, каким образом строится молекула органического вещества, молодой русский ученый в январе 1858 года в Парижском химическом обществе выступает с докладом, в котором он прямо говорит, как, по его мнению, устроена молекула метана, хлористого метила, хлороформа и других органических веществ, молекулы которых имеют «однотипную молекулярную структуру», то-есть однотипное строение.

Это была первая в мире попытка раскрыть строение молекулы органического вещества, исходя из того положения, что, вступая в химическое соединение, атомы входящих в его состав элементов затрачивают свои валентности на связь друг с другом.

Если уподобить валентность атомов, скажем, рукам или щупальцам, то становится ясным, что образующаяся в соединении молекула построится не случайно, а строго закономерно, так как «сцепиться» как-нибудь иначе, чем позволяют валентности, атомам невозможно.

Все это было показано докладчиком ясно и убедительно. Тут же он высказал замечательное предположение, что в рассмотренном им ряду молекулярных структур существует еще не известное химикам органическое соединение, а именно «метиловый гликоль». Именно строгий порядок, в котором располагаются атомы, вступая в химическое соединение, убеждал, что между метиловым спиртом и муравьиной кислотой должно находиться еще одно химическое соединение.

В заключение своего доклада Бутлеров заявил:

«Экспериментальные исследования дадут нам основание для настоящей химической теории, и она будет математической теорией для молекулярной силы, которую мы называем химическим сродством. Но так как сродство служит причиной не только химических превращений, но также и определенной группировки элементарных атомов в сложных частицах, то это сродство должно быть изучаемо не только во время вызываемого им молекулярного движения, но и в состоянии равновесия».

Доклад Бутлерова в Парижском химическом обществе совершенно точно определил нарождавшуюся теорию как теорию химического строения, или структуры, и это название осталось за нею навсегда, как навсегда связалось с нею и имя Бутлерова.