5

We use cookies. Read the Privacy and Cookie Policy

5

В восьмидесятых годах американский физик Альберт Майкельсон указал еще на одну возможность экспериментального подхода к этому вопросу.

Если, рассуждал Майкельсон, земной шар движется сквозь абсолютно неподвижный мировой эфир, тот да луч света, пущенный с поверхности Земли, при определенных условиях будет неизбежно подхвачен и отнесен назад «эфирным ветром», дующим навстречу движению Земли. «Ветер», о котором идет речь, должен возникать исключительно благодаря перемещению Земли относительно эфира. Так, высунув руку из окна вагона на ходу поезда, пассажир всегда ощущает ветер, хотя бы воздух вокруг поезда сам по себе был совершенно спокоен! Дым из трубы паровоза по этой же причине стелется назад, параллельно движению поезда…

Представим себе теперь луч света, пущенный от источника С вдоль направления перемещения Земли. (Смотри рисунок, изображающий схему опыта Майкельсона в горизонтальном плане.) Луч проходит сначала путь СА до полупрозрачной, полузеркальной пластинки А, поставленной под углом 45°. Тут луч раздваивается. Часть света идет дальше к зеркалу Б и, отразившись от него, возвращается к А, после чего, испытав вторичное отражение, на этот раз «под прямым углом попадает в наблюдательную трубку Т. Маршрут второй части светового пучка иной: после двукратного отражения, сперва в А, потом в В, пронизав пластинку А, луч финиширует в той же трубке Т.

Сойдясь вместе на отрезке пути AT, обе части расщепившегося светового пучка должны наложиться друг на друга. Подобное наложение (интерференция) световых волн, как известно из оптики, дает чередование светлых и темных «полос. Размещение их в поле зрения трубки зависит от величины сдвига одной вереницы волн по сравнению с другой. Что можно было ожидать в данном случае?

Все три отрезка пути, то есть АВ, АБ и AT, были взяты равными друг другу, и, следовательно, оба луча должны прийти к финишу в одно и то же время. Но это только в том случае, если ничто не повлияет на ход световых волн вдоль пути следования!

При наличии же неподвижного эфира результат окажется иным. На участке пути АБ будет дуть «эфирный ветер», и свету понадобится больше времени, чтобы пробежать взад и вперед этот участок (по сравнению с отрезком АВ). Это создаст запоздание в приходе к финишу одного луча по сравнению с другим. Величина запоздания будет зависеть от соотношения между скоростью Земли и скоростью света.

Несмотря на громадную разницу в скоростях — 30 и 300 тысяч километров в секунду — и соответственно ничтожную разницу во времени, эффект запоздания должен был осязаемо сказаться на интерференционной картине и мог быть точно измерен на опыте.

Практически измерение, производилось так: вся установка, состоящая из зеркал, полупрозрачной пластинки, светильника и интерферометра, была смонтирована на каменной плите и могла поворачиваться горизонтально как одно целое. Сначала определялось положение интерференционных полос в исходной позиции. Затем производился поворот на 90 градусов, и тогда отрезки АБ и АВ менялись местами по отношению к направлению ожидаемого «ветра». Зрительная труба также оказывалась теперь нацеленной не поперек, а вдоль направления «ветра». Тот луч, который раньше запаздывал, теперь становился опережающим — интерференционные полосы, стало быть, должны были смещаться по сравнению с исходным положением. По величине этого сдвига и можно было судить о наличии «эфирного ветра».

Первая экспериментальная установка такого рода была построена и испытана Майкельсоном в 1881 году в Берлине (куда ученый выезжал в научную поездку). Затем опыты были перенесены в Америку. Майкельсону помогал здесь его ближайший сотрудник Эдуард Морлей. К 1887 году чувствительность прибора была повышена настолько, что можно было надежно зарегистрировать эффект «эфирного ветра» в десять раз меньший, чем ожидавшийся.

Результат всех этих опытов был прост: нуль!

Это означало, что «эфирного ветра» нет и что неподвижного эфира, сквозь который прокладывает себе путь Земля, не существует также.

Что касается, в частности, эфира, то выход из создавшегося тупика мог показаться и не столь уж затруднительным: раз эфир в одно и то же время оказывается и подвижным и неподвижным, следовательно, предмета с подобного рода мистическими свойствами не существует вовсе!

Это «закрытие» механического эфира само по себе не могло внушать особой печали, но, по существу, оно не решало ничего.

Величайшее замешательство овладело теоретиками, размышлявшими над этим клубком загадок.

Запершись в своей студенческой каморке в Цюрихе, восемнадцатилетний Эйнштейн, как он рассказал потом сам, тщетно пытался придумать новый прибор, способный внести ясность в вопрос о движении Земли в связи с распространением света.

Весной 1905 года — через семь лет — он уже держал в своих руках ключ к тайне.

Но прежде чем выступить с ним вперед, он должен был завершить сначала то, что, считал для себя в те дни неотложным делом научной совести, делом чести, делом жизни.