9. Ускорительная логика

We use cookies. Read the Privacy and Cookie Policy

Как всем хорошо известно, чем меньше длина волны фотона, тем больше в нем содержится энергии, это утверждает закон Планка. Поэтому, если вы хотите узнать, как устроено вещество, вам нужно ударить по нему частицами, обладающими высокой энергией, ибо, чем выше их энергия, тем глубже они проникнут в глубь вещества и тем мельче будут те частицы, которые они оттуда выбьют. И значит, зондирующие частицы нужно разгонять до больших скоростей. А уж потом, ударив их о мишень, посмотреть, что из этой мишени посыплется. И, проанализировав эти осколки, можно будет сделать вывод о том, из каких же осколков, виноват, элементарных частиц состояло вещество до того, как об него шлепнулась зондирующая частица. И вот для этой цели приходится создавать ускорители частиц высоких энергий.

Автор сильно сомневается в строгости этой логики, вытекающей из квантовой механики совместно со специальной теорией относительности Эйнштейна, потому что этот метод напоминает ему битье посуды (см. в качестве учебного пособия оперетту «Принцесса цирка», в которой две дамы соревновались в этом искусстве), ибо осколки, добытые с таким трудом из посуды, не обязательно свидетельствуют о том, что эта посуда до битья состояла из этих осколков. Скорее всего, этих осколков до произведенной операции в посуде не содержалось, а появились они как раз в результате этого научного эксперимента. Но ускорительщикам виднее. Все-таки они занимаются этим всю жизнь.

Однако у автора есть и второе сомнение: он не понимает, почему фотонная логика распространяется вообще на все частицы микромира. Даже если сам Луи де Бройль провозгласил всеобщность корпускулярно-волнового дуализма. Ведь у разных частиц массовая плотность может быть разной, значит и энергосодержание у них будет разное. Почему вообще энергосодержание любой массы определяется через скорость света? Ведь это всего лишь скорость распространения фотонов в свободном пространстве и ничего более. Какое отношение все это имеет к частицам, образующим, например, ядро атома, в котором нет фотонов, нет свободного пространства для перемещения фотонов, а есть ядерные силы, не имеющие к электромагнитной природе фотонов никакого отношения? Правда, квантовая механика утверждает, что частицы микромира как-бы не имеют размера, они как-бы точечные, хотя имеют массу. Массу имеют, а объема не имеют? А их массовая плотность?.. М-да! И так далее.

Но, так или иначе, физики всего мира в попытках узнать тайну строения материи, а попутно сделать атомную бомбу пострашнее, начали строить различные ускорители, с помощью которых можно разгонять заряженные частицы и шлепать их о мишени. И тут развернулось соревнование между нами и американцами.

В 1931 году американцы построили первый электростатический генератор, а в 1932 году англичане добавили в нему каскадный генератор. Эти генераторы получали ускоренные частицы с энергией 1 МэВ (один миллион электронвольт). В 1940 году американцы построили бетатрон. В 1944 году у нас придумали автофазировку и создали синхротрон. Американцы спохватились, изобрели то же самое и тоже создали синхротрон, но побольше. А в 50-е годы они придумали принцип знакопеременной фокусировки и резко повысили предел допустимых энергий в линейных ускорителях.

В 1966 году в Станфорде они запустили линейный резонансный ускоритель на 22 ГэВ (гига-электрон-вольт, это что-то очень много). Но у нас в 1967 году под Серпуховым был создан синхрофазотрон на 76 ГэВ, и мы этим самым переплюнули американцев.

Тогда американцы, которые тоже не лыком шиты, создали синхрофазотрон на 200–400 ГэВ. Но не на таких напали! И мы решили создать ускорительный монстр на еще больше. А для этого вырыли в поселке Протвино под Серпуховым тоннель на глубине 50 м. и длиной в 22 км, в котором предыдущий ускоритель, в свое время переплюнувший американцев, будет являться лишь промежуточным каскадом.

К сегодняшнему дню наше богатое государство успело зарыть в этот подземный ускоритель сколько-то десятков миллиардов доперестроечных рублей. Но тут, похоже, и у нас, и у американцев оказалась кишка тонка. У нас вообще началась перестройка. А американцы подзастряли, возможно, потому, что они благодаря развитию нашей экономики после 1985 года и так сохранили свое первенство в размерах ускорителей. Исчез стимул.

Но научная работа на уже построенных ускорителях продолжается. И автору приятно было убедиться в том, что в Протвино, например, действует научный дискуссионный семинар, на котором автору удалось побывать. На этом семинаре обсуждалась главная, как было сказано, проблема — почему за рубеж ездят только администраторы, а не сами ученые?

Этот вопрос активно обсуждался всеми присутствующими учеными, обладателями разных ученых степеней. Другие вопросы не обсуждались, они, вероятно, не относились к главному направлению деятельности.

Все это так, к слову, потому что автор посетил Протвино совсем с другими целями. Он прослышал, что ускорителю понадобились линии связи для передачи сигналов от далеко находящихся датчиков к диспетчеру, который в любой момент должен знать, что у него все исправно. А помимо диспетчера это должны фиксировать автоматические регистраторы. У автора имелась тщеславная мысль внедрить туда свои авиационные связи, потому что он надеялся, что его связи, так хорошо зарекомендовавшие себя в авиации, поведут себя не хуже и в таком большом устройстве, как самый могучий в мире ускоритель. А когда связи будут опробованы на длине в 22 км или хотя бы на половине этого расстояния, об этом потом можно будет раструбить по всему свету. Поэтому автор со своим товарищем и со своими предложениями явился в Протвино. И там состоялся вот такой разговор.

— Мы приехали предложить вам самые лучшие в мире информационные связи для вашего самого большого в мире ускорителя.

— А из чего они сделаны, ваши связи? — поинтересовались эксплуатационники ускорителя, которые как раз и должны были делать связи для техобслуживания ускорителя.

— А они у нас из проводов. Проводов бифилярных, скрученных, помещенных в общий экран. Исключительно высокой надежности и помехоустойчивости.

— Это хорошо, — был ответ, — но нам нужно очень высокое быстродействие и поэтому ваши проводные связи не годятся. Потому что частоты у вас слишком малые, будет большая задержка во времени.

— Признаем, признаем! — сказали мы. — А что же вы поставите вместо проводов?

— Поставим мы волоконно-оптические линии связи, у которых пропускная способность значительно выше. Вот если вы разработаете такие линии для нас, то мы будем благодарны, и обязательно их применим. Правда, они раз в сто дороже, чем проводные линии связи, а может быть и в двести, но чего не сделаешь ради технического прогресса.

— Нет, — сказали мы, — их пусть разрабатывает кто-нибудь другой. Не хотите — как хотите. А мы поехали домой. Но все же любопытно, чем определяются столь высокие требования к быстродействию?

— Они определяются тем, что сигналы о неисправных датчиках должны как можно быстрее попасть на экран к оператору. И никакие задержки здесь не допустимы.

— Позвольте, позвольте, — засуетились мы. — Мы не понимаем. Ведь самое быстрое движение у оператора — это моргнуть глазом. На это уходит целая одна десятая доли секунды. Да за это время мы вам на обычных проводах любой сигнал доставим и не за 22 км, а хоть за сто! А если ваш оператор должен кнопку нажать, то на это уйдет 2–3 секунды. А если он еще должен подумать, прежде чем нажать, то это минимум десять секунд. Где логика?! А вы экономите десяток микросекунд! Зачем?!

— Вы неправильно понимаете весь этот сложный процесс, — ответили нам. — Какой там глаз, какая кнопка! Все это ненадежно и безответственно. Когда оператор получит сигнал о неисправности датчика, он должен убедиться в том, что автоматика сообщила эти данные правильно. И только после этого он должен записать показания в журнал. И обязательно расписаться. А наутро придут ремонтники, которые выпишут заявку на ремонт и пойдут менять датчик. А это знаете, как далеко? А уж после этого сделают отметку о том, что работы выполнены. Для этого, конечно, придется на время прекратить работу ускорителя, потому что техника безопасности у нас на первом месте. И включим мы ускоритель только после того, как ремонтники вернутся на место и дадут соответствующее разрешение. Так что поезжайте домой и подумайте насчет стекловолоконных линий связи. Они, конечно, дороже, но мы не можем скупиться в таком важном деле.

И мы уехали. Я потом подумал, что есть что-то родственное между задачами передачи сигналов и задачами выяснения строения материи с помощью ускорителей высоких энергий.

Природа едина, и подход к решению научных проблем тоже един.

Более 800 000 книг и аудиокниг! 📚

Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением

ПОЛУЧИТЬ ПОДАРОК