Радиокомпоненты
Радиокомпоненты
Наиболее узким местом в создании радиолокационной промышленности были радиокомпоненты. До войны все производства радиокомпонентов существовали только в виде цехов, или даже участков аппаратных заводов. В 1941 году об организации специализированных заводов по их выпуску только задумались, но война помешала реализации планов и заводов по выпуску радиодеталей в Советском Союзе не было. Многие принципиально важные узлы радиолокационной аппаратуры (магнетрон, индикатор кругового обзора, и др.), использовавшиеся в английских и американских радарных установках, у нас вообще серийно не выпускались, хотя, конечно же, производство радиокомпонентов в нашей стране существовало и имело свою историю.
Еще в 1910 году в России для судовых радиостанций изготовлялись конденсаторы типа лейденских банок. Радиодепо Морского ведомства изготовляло для искровых радиопередатчиков цилиндрические конденсаторы из бакелизированной бумаги и плоские стеклянные конденсаторы, залитые маслом. Освоены были также переменные воздушные конденсаторы с цельнофрезерованными пластинами. Но ко времени первой мировой войны русская электротехническая промышленность почти полностью находилась в руках иностранных фирм, которые предпочитали импортировать все важнейшие детали, включая радиокомпоненты, а на российских предприятиях производить только сборку аппаратуры.
Отечественное производство конденсаторов и сопротивлений начали создавать после революции 1917 года. В конце 20-х и начале 30-х годов в Советском Союзе было организовано производство слюдяных и бумажных парафинированных конденсаторов (с 1930 г. на отечественной слюде и с 1933 года на отечественной конденсаторной бумаге). В 1939 — годах были проведены разработки и организовано опытное производство более стабильных слюдяных конденсаторов с серебренными обкладками и малогабаритных электролитических конденсаторов.
Отечественные сопротивления этих лет в основном относились к так называемому композиционному типу и имели конструкции аналогичные иностранным. В 1934 году на заводе "Мосэлектрик" изобретателем Б. Е. Каминским было организовано производство коксовых сопротивлений. Смесь сажи, гуммиарабика и сахара наносилась на стеклянные штабики и после обжига превращалась в твердую полупроводящую пленку. Эти сопротивления допускали значительную электрическую нагрузку и их можно было использовать в анодных цепях электронных ламп вместо проволочных сопротивлений, но они были очень гигроскопичны — настолько, что при повышении влажности воздуха радиоаппаратура часто переставала работать. Для избавления от этого недостатка в качестве связки сажи стали использовать различные лаки. Сопротивления с лакосажевыми пленками на фарфоровых трубках начали выпускать с 1934 года, в 1937 года была освоена американская технологии их выпуска в виде непрерывного процесса (сопротивления типа ТО), а еще позднее на новых принципах была создана своя оригинальная технология их изготовления.
Композиционные сопротивления были долгое время незаменимыми в специальной аппаратуре там, где требовались высокие величины, малые габариты и особые геометрические формы. Однако, качество отечественных связующих лаков, определявших их климатическую стабильность, так и не удалось довести до мирового уровня. По этой причине с 1935 года параллельно стало развиваться производство непроволочных постоянных сопротивлений с проводящим слоем пиролитического углерода, осаждаемого а вакууме на керамические основания (типа СС).
Из работ по другим радиокомпонентам можно отметить, что в 1939 году в нашей стране впервые появились термосопротивления на основе окислов железа а также непроволочные катушки индуктивности. 1940 — годах были созданы колебательные контуры печатного типа с переменной настройкой, разработаны способы термокомпенсации колебательных контуров с переменной настройкой по частоте и коэффициентом перекрытия порядка 2-х — также на основе печатных схем. Таким образом, был создан задел для последующего широкого внедрения технологии печатных схем.
Наиболее сложные задачи в производстве радиолокационных станций ставили электровакуумные приборы, причем они же — в первую очередь магнетронные или клистронные излучатели (магнетрон и клистрон), задавали основные параметры радиолокатора (мощность и диапазон волн излучения), определяли его технический уровень, качество и отчасти габариты.
Очень быстро А.И. пришлось с головой окунуться в вопросы совершенно новой для него электронной техники. Ему — человеку со стороны — нужно было понять сложности производства радиокомпонентов, разобраться в причинах столь низкого его уровня и выявить главные из них и наметить пути развития. Здесь уместно хотя бы в самых общих чертах уделить несколько строк принципиальной новизне электровакуумного производства, отличавшей его от остальной промышленности страны.
В приборостроении и машиностроении, столь хорошо знакомых А.И. по работе в Судпроме, сборочные операции отдельных узлов и приборов в целом, как правило, "обратимы", то есть возможен обратный процесс: разобрать, заменить недоброкачественные детали или подогнать их "по месту", и собрать вновь. Так, плохая регулировка подшипника автомобиля не означает, что автомобиль в целом должен быть забракован: испорченный подшипник может быть заменен новым. Стоимость брака в этом случае равна стоимости одного подшипника, а не всего автомобиля. Прецизионные шариковые подшипники для гироскопов так и изготавливались: закупали партии самых точных серийных подшипников, разбирали, далее проходил подбор шариков и повторная сборка.
Изготовление же электровакуумных приборов характеризуется большим числом необратимых специально разработанных технологических операций. Технологический цикл изготовления широкополосной приемо-усилительной лампы содержал более 250 технологических операций, а магнетрона — более 450, и большинство этих операций необратимы. Их производство можно упрощенно сравнить с процессом получения сплава металлов определенного состава и свойств. В случае недоброкачественных материалов или ошибок в технологическом процессе прибор, собранный из множества деталей и узлов, так же, как и негодный сплав, нельзя простыми способами разложить на исходные компоненты.
При этом большинство деталей и узлов имеют очень высокие требования к точности, чистоте поверхности, прочности и герметичности соединений, а некоторые из них имеют столь малые размеры и труднодоступные участки, что обработка их общепринятыми способами невозможна. Не менее высоки требования к неизменности размеров, формы и еще многих физико-химических свойств деталей и собранных узлов при различных воздействиях и в процессе изготовления приборов, и в условиях эксплуатации. Чтобы удовлетворить этим требования применяют самые разнообразные по своим свойствам металлические и неметаллические материалы и особые технологические приемы с соблюдением высокой производственной гигиены, широким использованием защитных сред (водород, инертные газы, вакуум) и другими мерами.
По этим причинам в составе материалов, применяемых в электровакуумной технике, насчитывается до 90 % элементов таблицы Менделеева. Для многих из них электровакуумное производство являлось единственной отраслью с более или менее значительным промышленном применением. Те же материалы, которые и ранее использовались в других отраслях техники, теперь требовали более высокой степени очистки, специальных режимов обработки и т. д.
Для электровакуумных приборов характерен также большой уровень технологических отходов в производстве, одна из причин которого как раз недоброкачественность исходных материалов и нестабильность их вакуумных свойств. Однако, задача снижения потерь зачастую уступает по своему экономическому и техническому значению другой важной задаче — повышению надежности и долговечности изделий. Здесь особо ответственными являются технологические операции, необходимые для придания деталям и узлам свойств, непосредственно обеспечивающих электрические и другие параметры приборов (активирование катодов, тренировка и др.). Характерные для этих операций физические и химические процессы протекают в условиях вакуума, воздействия сильных электрических полей, нагрева до строго определенных температур, влияния остаточных газов и других трудноучитывамых факторов. Недостаточная изученность этих процессов затрудняла производство, вызывала необходимость широкого использования различного рода проб и являлась причиной невоспроизводимости параметров приборов. Эта ситуация усугублялась несовершенством методов контроля, в комплексе которых всегда был очень высок удельный вес визуальной оценки качества деталей. Методы же контроля из других отраслей техники часто не давали представления о действительном поведении деталей и узлов в приборах. Все это опять-таки вызывало необходимость проведения многочисленных и длительных производственных проб.
К счастью, в нашей стране был большой научный задел по электровакуумным приборам, в т. ч. СВЧ диапазона, были и приоритетные работы. Первый электровакуумный завод был создан постановлением ВСНХ в Петрограде в 1922 году. Им руководили М. М. Богословский и С. А. Векшинский. П. И. Лукирскому и С. А. Векшинскому и их школам принадлежали важные работы по эмиссионной электронике, находившие прямой выход в промышленности электронных ламп. Заводом предприятие было только по названию, поэтому в 1928 его присоединили к электроламповому заводу "Светлане". После этого слияния Векшинским была организована лаборатория, в которой были проведены серьезные исследования в области физики и технологии электронных приборов (по эмиссионным свойствам катодов, газовыделению металлов и стекла, вакуумной технике и т. д.).
В 1928 — годах отдел электронных ламп был организован и на электрозаводе Государственного электротреста в Москве. Это предприятие ведет свою историю от основанной в 1907 году на Мясницкой улице электроламповой мастерской, ставшей затем фабрикой. В 1921 году было создано Московское объединение фабрик электроламп, на базе которого в 1928 году и был организован электрозавод, разместившийся в здании на Генеральной улице (ныне Электрозаводская). В 30-х годах здесь было освоено промышленное производство вольфрама, тантала и танталониобиевых сплавов. В 1931 завод стал первым в стране предприятием, награжденным орденом Ленина. В 1938 году его переименовали в электроламповый завод Московского электрокомбината.
К лаборатории Векшинского на "Светлане" постепенно присоединялись другие и в начале 30-х годов она выросла в крупную научно-исследовательскую организацию, получившую в 1934 году название "Отраслевая вакуумная лаборатория" (ОВЛ) и ставшую по существу основным научным центром советской электроники. Но в 1937 году Векшинский был арестован. После него вплоть до 1941 года ОВЛ руководил С. А. Зусмановский.
Здесь работали многие крупные специалисты, возглавившие исследования по основным направлениям электронной техники.
Эти возможно утомительные описания особенностей технологии и организации электронного производства приведены здесь с целью показать, насколько сложным было дело создания промышленности, способной массово производить высоконадежные активные и пассивные радиокомпоненты. Требовалось разрешение целого ряда сугубо специфических проблем: разработки специальных технологических процессов, разработки и производства спецтехнологического оборудования, получения широчайшей гаммы материалов с высшей степенью очистки, разработки специальных методов контроля качества и оборудования для них. С этими проблемами А.И. впервые столкнулся именно в трудные годы войны и тогда же начал приобретать опыт по их разрешению в промышленном масштабе.
Для иллюстрации состояния дел с электровакуумном производством и материалами для него в последние предвоенные месяцы можно привести взгляд совсем уж стороннего человека. Воспользуемся вновь воспоминаниями В. С Емельянова, ставшего 15 июля 1940 года первым заместителем председателя Комитета стандартов.
-Три дня не выпускаем радиолампы. Ни одной лампы не могли сдать. Все забраковано. Раньше никто не обращал никакого внимания на то, сколько часов лампа проработает. Установленной стандартом норме ни одна лампа не соответствовала. Это мы обнаружили, когда отдел технического контроля стал проверять показатели качества. — В чем же дело? Почему лампы не работают положенное число часов? — спросил я Восканяна. — Цоколь лампы изготовляется из металла фуродита.
Мы штампуем его из металлической ленты. Так вот, эта лента не держит вакуум — металл очень пористый. Не металл, а марля какая-то.
-А кто вам эту ленту поставляет?
-Московский завод "Серп и молот".
Я стал вспоминать. Ведь мы изучали производство фуродита в Германии — на заводах Круппа и Рохлинга.
За техническую помощь Советским Союзом были уплачены большие деньги. Кто же изучал это производство?
Я вспомнил: инженер Фрид с московского завода "Серп и молот".
Я позвонил директору завода Ильину и спросил, работает ли у них Фрид. — Работает. — Нельзя ли его направить к нам, в комитет стандартов? — Когда? — Если можно, то сейчас же. Мы разбираем очень важный вопрос. Он нам может помочь в этом.
Через несколько часов Фрид был у нас в Комитете.
- Вы ведь изучали производство фуродита в Германии.
- Да, изучал.
- Чем вы объясните, что лента из фуродита, изготовляемая вашим заводом, такая пористая?
Фрид стал подробно объяснять особенности кристаллизации сталей этого типа.
- Для уменьшения величины кристаллов, как вам хорошо известно, — сказал Фрид, обращаясь ко мне, — на заводах Круппа и Рохлинга в такую сталь вводят азот. Они производят у себя азотированный феррохром. Но азотированный феррохром необходимо специально изготовлять, а это довольно сложное дело. Так вот, для упрощения производства работники нашего завода решили изготовлять фуродит на обычном феррохроме без азота. Это первое отступление от сложившейся мировой практики. Но есть и второе. Содержание углерода в фуродите должно быть очень низким, а у нас решили увеличить его содержание вдвое против норм, принятых на всех европейских заводах. С предложением повысить содержание углерода в фуродите и исключить из его состава азот директор обратился в Наркомат черной металлургии. Там связались с заместителем наркома электротехнической промышленности И. Г. Зубовичем и предложили ему внести в действовавший тогда стандарт указанные поправки. Как мне рассказывали, присутствующие при разговоре с Зубовичем работники Наркомата черной металлургии заявили: "Если вы откажетесь принять наши условия на фуродит, то совсем ничего не получите. Ваши мудрецы с нашими теоретиками из лаборатории такие технические условия выдумали, что по ним ни один завод не сможет работать". Зубович дал согласие. Новые условия на фуродит были подписаны. Завод "Серп и молот" стал выполнять план по фуродиту и поставлять его заводу "Светлана", а завод "Светлана" — изготовлять из негодной фуродитовой ленты негодные лампы. Тевосяна /в это время бывшего уже наркомом черной металлургии, А.Ш./ в это время в Москве не было, он бы этого не допустил, — закончил свое объяснение Фрид.
Как досадно все это слушать! Еще десять лет тому назад мы изучили производство фуродита и умели изготовлять его не хуже немецких заводов. Зачем же в погоне за упрощением технологии производства снижать качество?
Вопрос о фуродите стал предметом разбирательства в Совнаркоме. Начальники, изменившие стандарт, были наказаны, а заводу был дан месячный срок для восстановления прежней технологии производства."
Понятно, почему в Главрадиопроме НКЭП все довоенное электровакуумное производство было ограничено двумя цехами на "Светлане" и "МЭЛЗе": подобные вопросы, а их было огромное множество, решить самостоятельно здесь не могли, а Совнарком по каждому такому случаю собираться не мог. Характерно, что в 1935 году и завод "Светлана" и ВЭИ отказались выполнить заказ КБ УПВО на разработку импульсной генераторной лампы, и заказчикам пришлось создавать ее в своей вакуумной лаборатории (В. В. Цимбалин при консультации профессоров Н. Н. Циклинского и Д. А. Рожанского). Лампа, получившая наименование ИГ-7 послужила прототипом последующих конструкций импульсных ламп ИГ-8 и др., выпускавшихся уже "Светланой" и другими предприятиями для станций "Редут" и "Пегматит". Таким же образом получилось, что многорезонаторные магнетроны были впервые созданы в лаборатории НИИ-9, а их практическое применение во время войны начали англичане, создав первые промышленные конструкции с высоким КПД, устойчивые к механико-климатическим воздействиям и разработав технологию их серийного производства.
Теперь все заботы по решению проблем выпуска сложнейших типов электровакуумных приборов для РЛС были возложены на Совет по радиолокации. Можно только предполагать, что же почувствовал А.И., когда осознал всю безграничность проблем развертывания крупномасштабного выпуска отечественных РЛС и их дальнейшего совершенствования, а особенно радиокомпонентов.
Поиск заводов, подходящих для производства радиокомпонентов проходил гораздо труднее, чем для выпуска самих станций. Причиной было не только отсутствие подходящего оборудования — все приходилось начинать практически с нуля: помимо оборудования не было материалов, а главное — не было кадров. "Светлана" осталась в блокаде, и вся надежда была на Московский электроламповый завод, хотя основная его часть в 1941 году была эвакуирована, около 500 рабочих и служащих ушли на фронт, а на оставшемся оборудовании, как и на всех московских заводах, было налажено производство боеприпасов. Все же в начале 1942 года на заводе был организован цех радиоламп. Здесь же начали делать электронно-лучевые трубки для РЛС и под руководством главного инженера Р. А. Нилендера организовали восстановление генераторных ламп ИГ-8 для обеспечения бесперебойной войсковой эксплуатации станций РУС-2 и РУС-2с. В 1943 году заводчанам удалось увеличить срок службы радиоламп в 10 раз. Только в 1944 году в Павловском Посаде Московской области был создан первый отечественный специализированный завод радиодеталей (ныне это завод "Экситон"). Когда была снята блокада Ленинграда началось восстановление производства электровакуумных приборов на "Светлане".
При крайне ограниченных возможностях промышленности и острой нехватке материалов особенно важными являлись вопросы нормализации комплектующих изделий, унификации радиоэлементов и измерительной техники. Для их разработки Советом по радиолокации было создано Проектно — конструкторское бюро (ПКБ).
Можно без преувеличения утверждать, что деятельность ПКБ позволила заложить основы системы качества не только радиолокационной, но и всей другой радиоэлектронной аппаратуры. Первым начальником ПКБ стал Н. Л. Попов, до этого работавший главным инженером НИИ-20 и на протяжении многих лет отдававший свои знания, опыт и энергию развитию радиотехники и радиолокации.
Преодолеть слабость радиопромышленности во время войны было невозможно, и это сказывалось не только на радиолокации. Когда уже в мирное время стали воспроизводить трофейные ракеты ФАУ-2 и на их основе разрабатывать свои, то оказалось, что например, многоконтактные реле, умеет делать в нашей стране только один ленинградский завод телефонной аппаратуры "Красная заря". В Германии же только у фирмы "Телефункен" было три подобных завода и по меньшей мере два у "Сименса".