Технологическое заболевание бездны
Технологическое заболевание бездны
Чтобы собирать чудесные россыпи[104] на дне морском, и так много сулящие будущему нашей промышленности, чтобы разместить в открытом море искусственные острова нефтяных платформ, чтобы ремонтировать их на большой глубине, Технологическому человеку нужны будут новые средства, новые машины, неограниченные капиталы. Как сказал мой друг доктор Шарли с присущим ему юмором, “эксплуатация больших глубин — это прежде всего проблема больших капиталов”.
Философия Технологического человека в вопросе завоевания океанов отчасти могла бы выразиться так: “Для эксплуатации богатств океана необходимы новое снаряжение и техника. Чтобы обзавестись этим, нужны капиталы… огромные капиталы. Откуда их взять? Из моря, естественно!” И так далее, адская круговерть не имеет конца. Сначала это всего лишь вопрос глубины. Когда ограблено все, что возможно, на глубине “X”, ничего другого не остается, как опуститься немного ниже.
Вы мне не верите? Вспомните героическую эпоху нефтяной эксплуатации. Она началась с очень богатых подземных пластов в благоприятных для эксплуатации областях нашей планеты. Затем техника улучшилась, и это позволило понемногу качать нефть повсюду на земле, в самых неожиданных регионах. Сейчас, когда запасы нефти иссякают, ничего не придумано лучше, как черпать ее прямо с морского дна. Начиналось скромно и робко в не очень глубоких водах, не слишком далеко от берега. Всего за двадцать лет техника добычи сделала головокружительный скачок, впрочем, как и глубина. Искусственные островки растут в открытом море со скоростью грибов. Скоро действующие разработки будут расположены на 2000 м, и способность Технологического человека работать на такой глубине, дыша все более сложными газовыми смесями, перестанет быть утопией.
В будущем все более глубокий спуск будет стоить все дороже. Техника усложнится, водолазные работы подорожают, а список жертв “несчастных случаев на производстве” станет длиннее. Всего несколько лет назад сжатый воздух, используемый в аквалангах для дыхания, вызывал на 60-метровой глубине различного вида расстройства — наркозы, обязанные преимущественно растворению азота в крови и токсичности кислорода под давлением. В наши дни подводники привыкли к этому и могут, пренебрегая некоторыми основными правилами техники безопасности, погружаться гораздо ниже. Для достижения больших глубин сжатый воздух заменили смесью кислорода и гелия. Стали удивляться возможности ныряльщиков опускаться на 300 и 450 м в кессоне (в ложном погружении[105]). Но появились новые нарушения в организме из-за использования этих смесей в среде, подвергнутой высоким давлениям. Ниже уровня 300 м и проявлялся “синдром высокого давления”.
Но исследователи не признали себя побежденными. Американцы и прежде всего французы, в особенности команда СОМЕХ из Марселя, под руководством доктора Ксавьера Фрукту продолжали свои эксперименты погружений, как ложных, так и в открытом морс. Так, в одном из гипербарокессонов во время операции “Физалия-VI” был побит невероятнейший рекорд в 610 м, когда 10 мая 1972 г. два молодых француза, Роберт Горэ и Патрик Шемин, оставались на этой глубине в течение часа. Их декомпрессия продолжалась потом десять дней. Затем, также в СОМЕХ, в ходе операции “Стрелец-IV” состоялось 50-часовое пребывание на той же глубине Клода Бурдье и Алена Журде.
Американцы отправили работать людей на глубину 350 м, а два французских акванавта (Жак Верно и Жерар Виаль) совершили двадцатиминутное “пике” на глубину 501 м, выполняя операцию “Никогда”, которая проходила в открытом море у Кавальер, во Франции, в октябре 1977 г. и состояла из серии работ акванавтов на глубине 460 м.
Пятьсот метров под поверхностью воды без брони, без стального панциря, как к примеру, на подлодке, чтобы защитить этот нежный часовой механизм, каким является человеческий организм, — как вы думаете, легко ли это? Некомпетентный читатель задаст себе, конечно, пару вопросов. Отвечу коротко. На глубине 500 м любой предмет или организм испытывает давление на каждый квадратный сантиметр в 51 кг. В подводной лодке стального панциря часто бывает достаточно, чтобы не быть раздавленным: люди внутри ее дышат воздухом под нормальным давлением (1 кг на 1 см2). Чтобы ныряльщик мог спуститься на глубину 500 м. нужно, чтобы его легкие и все воздушные полости организма, от самых крупных, как грудная клетка, до самых малых, как зубы, были постепенно заполнены смесью сжатых газов до тех пор, пока давление внутри не станет равно оказываемому водой снаружи. В нашем конкретном случае, следовательно, необходимы 51 кг давления на каждый квадратный сантиметр внутренних органов подводника, чтобы уравновесить 51 кг на 1 см2 гидростатического давления глубины. Требуется много часов, чтобы сдавить человека до такой степени, и много дней, чтобы вывести его из этого состояния. Делается это в специальных кессонах, в гипербароцентрах или на борту кораблей, оснащенных соответствующей аппаратурой. Затем, избегая любого неожиданного понижения давления, подводников “переливают” из одного кессона в другой (так, как делают астронавты в космосе) и помещают в башенку, которая погружается на желаемую глубину. Я умышленно избегаю использовать здесь техническую лексику специалистов, которые, я надеюсь, простят меня, если я таким образом упрощаю вещи.
Башенка постоянно связана с кораблем на поверхности, по трубам в нее текут горячая вода для обогрева комбинезонов подводников и различные смеси газов для дыхания. Чем-то эти трубы напоминают пуповину. Когда давление внутри башенки, а следовательно, и внутри тела водолазов становится равным гидростатическому давлению, можно открыть форточку. Вода не войдет внутрь, а подводники могут свободно выйти, продолжая, конечно, быть связанными с башенкой своими “пуповинами” — трубами, несущими тепло и газ для дыхания. Представьте себе этих ныряльщиков на глубине 500 м. Их хрупкое тело содержит газа в 51 раз больше нормального. Точнее, в том же самом теоретическом легочном объеме (а также в других воздушных полостях организма, называемых мертвым пространством) сжались, сплющились 51 единица вместо одной-единственной. Этот сжатый газ, который может взорваться при малейшем непредвиденном уменьшении давления, просачивается повсюду в организме водолаза и растворяется в жидкостях: крови, лимфе и т. д. Если, к несчастью, подводник поднялся бы быстрее предусмотренного или была бы допущена ошибка в расчетах времени декомпрессии, возникла бы опасность кессонной болезни, являющейся причиной паралича и часто смерти.
На глубине 500 м под поверхностью моря царит кромешный мрак. Очень холодно. Если бы трубопроводы горячей воды испортились, подводник не выдержал бы и нескольких минут. Работает он при свете мощных прожекторов. Его движения продуманы и рассчитаны до автоматизма. Он трезв, однако это та трезвость, что является частью искусственного и поэтому мрачного состояния, — я готов назвать ее трезвостью человека-робота. Его пребывание под водой, где властвуют нервное напряжение и тревога, регулируется математическими законами; безмятежной радости, интимной близости с морской стихией очень, очень мало. Прежде всего он чувствует холод металла и кислый вкус газовой смеси, этого яда, который дьявольская изобретательность человека смогла приспособить для дыхания, в большей степени он испытывает глубокое желание покончить скорее с этой работой, чтобы вновь обрести свежий воздух земли, семью, товарищей и компенсацию в звонкой монете… очень звонкой! Но имеет ли все это смысл на самом деле (ни жизнь, ни здоровье в действительности не определяются никакой ценой)? И водолазы, привлеченные высоким заработком, романтикой (зачастую преувеличенной) профессии, знают об опасности и вредных последствиях, проявляющихся в организме спустя длительное время и сначала едва уловимых. Это костный некроз (омертвение и распад ткани под влиянием нарушения кровообращения, химического или термического воздействия, травм и др), патология на фиброзном и клеточном уровне, микропузыри, которые никогда полностью не исчезают и играют скверные шутки в самые непредвиденные моменты и т. д.
Кроме того, производительность и эффективность в эти несколько минут работы на подводных строительных площадках в сравнении с днями и неделями декомпресии совершенно не соответствуют тем огромным капиталам, которые эти дни и недели поглощают.
“Конечно, будет продолжен поиск смешанных газов, к старым проблемам больших глубин добавятся новые, которые со временем состарятся, и появятся опять новые, еще более сложные, и так без конца”, — говорил мне в 1969 г. пионер и поэт моря командор Филипп Таййе.
Следовательно, надо будет искать новые пути…