Теория относительности

We use cookies. Read the Privacy and Cookie Policy

Теория относительности

Приступая к разговору о теории относительности, нам придется сделать небольшой обзор предпосылок ее появления. Со времен Ньютона в науке господствовали представления об абсолютном пространстве и абсолютном времени. Вот как определял их Ньютон:

«Абсолютное пространство остается в силу своей природы и безотносительно к какому-либо внешнему предмету всегда одинаковым и неподвижным».

«Абсолютное, истинное и математическое время течет само по себе и в силу своей природы равномерно и безотносительно к какому-либо внешнему предмету».

Можно смело сказать, что такая точка зрения вполне отвечает нашим бытовым представлениям о времени и пространстве. Теперь обратимся к другому вопросу, казалось бы, мало связанному с предыдущими утверждениями знаменитого англичанина. Речь вновь пойдет о свете и его природе. Согласно волновой гипотезе, свет представляет собой волны, распространяющиеся в особой среде — световом (светоносном) эфире. Считалось, что эфир проникает во все тела и вещества, но не перемещается вместе с ними.

В 1860-х годах английский физик Джеймс Клерк Максвелл вывел уравнения, описывающие электромагнитные явления в средах и вакууме. Одним из важнейших следствий этих уравнений стала конечность скорости распространения электромагнитных взаимодействий. Эта конечная скорость оказалась равна приблизительно 300000 км/с, то есть скорости света в вакууме.

Теперь осталось связать эти два представления между собой. Поскольку гипотетический эфир не участвует в движении тел, значит, он находится в состоянии абсолютного покоя, а следовательно, и является олицетворением абсолютного пространства, относительно которого движутся все тела. Значит, и Земля движется относительно эфира. И движется, согласно законам планетарной механики, с большой скоростью. Следовательно, скорость световых волн, движущихся параллельно движению Земли, должна отличаться от скорости световых волн, движущихся перпендикулярно ему. Такой гипотетический эффект назвали «эфирным ветром». Еще в начале XIX века совершались попытки экспериментально обнаружить эфирный ветер. Сделать этого не удалось, как тогда казалось, из-за недостаточного качества приборов. Но в 1888 году американский физик Альберт Майкельсон провел более точный эксперимент и. тоже не обнаружил эффекта эфирного ветра, а точнее, доказал его отсутствие. Ирландец Джон Фитцджеральд, а вслед за ним голландец Хенрик Антон Лоренц попытались спасти гипотезу эфира, предположив, что быстро движущиеся тела уменьшаются в направлении движения. К 1904 году Лоренц, для того чтобы уничтожить противоречия между уравнениями Максвелла и результатами опыта Майкельсона, разработал математический аппарат, позволяющий решить проблему, отталкиваясь от данного предположения. В основе этого решения лежали преобразования системы координат и времени какого-либо события при переходе от одной системы отсчета в другую. Позже эти преобразования были названы по имени их автора. Однако Лоренц не решился опровергнуть закон о сложении перемещений и скоростей, лежащий в основе ньютоновской физики. Поэтому он попытался ввести в свои расчеты силы, вызывающие сокращение быстро движущихся тел.

Теперь вернемся назад, в еще доньютоновские времена. Как мы уже писали, на рубеже XVI–XVII веков Галилео Галилей сформулировал принцип относительности движения. На этот принцип, как на следствие своих законов, указывал и Ньютон. Француз Анри Пуанкаре обобщил этот принцип, распространив его не только на движение, но и на другие физические процессы. Сначала, в 1899 году, Пуанкаре сформулировал принцип относительности в качестве рабочей гипотезы, а затем, в 1904 году, — в качестве предположения. В 1905 году, почти одновременно с Эйнштейном, Пуанкаре отправил в научные журналы две статьи под одинаковым названием «О динамике электрона». В первой из них он исправил ошибку, допущенную Лоренцом, а во второй развил математические следствия принципа относительности. И о Лоренце, и о Пуанкаре часто пишут, что они близко подошли к созданию теории относительности. Но, наверное, правильнее будет сказать, что эти ученые рассматривали свою деятельность, как некое физико-математическое моделирование. Чтобы воспринять теорию относительности как физическую реальность, требовался менее консервативный и более смелый человек. Им и стал Эйнштейн. Писатель Чарлз Перси Сноу в своей книге «Эйнштейн» писал: «...статья излагала специальную теорию относительности, соединявшую в одно целое материю, пространство и время.

В этой статье не было ни цитат, ни ссылок на авторитеты. Да и остальные статьи написаны в такой манере, которая не походила на работы других физиков-теоретиков. В эйнштейновских статьях было мало математических расчетов и много логического анализа. Приводимые в статьях доводы выглядели несокрушимыми, а выводы — совершенно невероятные выводы! — казалось, возникали с величайшей легкостью. К этим выводам он пришел, пользуясь силой и логикой своей мысли, не прислушиваясь к мнению других. Это кажется поразительным, но именно так и создавалась большая часть его трудов.

Можно с уверенностью сказать: пока существует физика, ни у кого больше не хватит сил выступить с тремя такими работами в течение одного года».

Очевидно, что о работах Пуанкаре 1905 года Эйнштейн знать не мог. Не знал он весной 1905 года и о преобразованиях Лоренца. Теперь перейдем к ходу его рассуждений, изложенных в статье «К электродинамике движущихся тел». Для начала он самостоятельно, независимо от Пуанкаре, формулирует специальный принцип относительности. Затем вводит второй постулат: скорость света в вакууме постоянна и не зависит от скорости движения его источника (или наблюдателя). Этот постулат вполне отвечает волновым представлениям о свете и подтверждается опытами Майкельсона. Интересно, что, взяв от волновой гипотезы такое утверждение, Эйнштейн тут же отказался от гипотезы светового эфира. Ранее эти гипотезы были неразрывны. Одна статья нашего героя привела к тому, что доминировавшая длительное время гипотеза светоносного эфира сдала свои позиции. Впоследствии некоторые ученые пытались реанимировать ее. Даже в наше время предпринимаются такие попытки, но оправиться от удара, нанесенного Эйнштейном, гипотеза эфира так и не смогла. Затем, основываясь на введенных постулатах, ученый делает целый ряд неожиданных и поразительных выводов. Для начала он расправляется с понятием «абсолютной одновременности». Если бы передаваемые сигналы могли распространяться моментально, то понятие «абсолютная одновременность» для двух событий, происходящих в разных точках пространства, было бы вполне правомерным. Но поскольку максимальная скорость передачи информации ограничивается скоростью света, говорить об «абсолютной одновременности» каких-то событий невозможно. Здесь налицо идеи Маха. Важным является не сам момент события в ньютоновском «абсолютном времени», а момент получения информации о событии.

Дальше Эйнштейн принимается за понятие времени вообще. Он пишет: «Желая описать движение какой-нибудь материальной точки, мы задаем значения ее координат как функций времени. При этом следует иметь в виду, что подобное математическое описание имеет физический смысл только тогда, когда предварительно выяснено, что подразумевается здесь под "временем". Мы должны обратить внимание на то, что все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях. Если я, например, говорю: "Этот поезд прибывает сюда в 7 часов", — то это означает примерно следующее: "Указание маленькой стрелки моих часов на 7 часов и прибытие поезда суть одновременные события"».

Но понятие об «абсолютной одновременности» событий разрушено. Следовательно, ньютоновское «абсолютное время», одинаковое во всех точках пространства, также неправомерно. Для каждой системы отсчета существует свое «локальное время». Свои рассуждения Эйнштейн иллюстрирует мысленными физическими экспериментами. (К сожалению, у нас нет возможности рассмотреть их из-за ограниченного объема книги. Популярное изложение мысленных экспериментов, объясняющих теорию относительности, можно найти в научно-популярной литературе.) Дальше — больше. Как пишет Б. Хофман в своей книге «Альберт Эйнштейн: творец и бунтарь»: «Ведь время относится к фундаментальным понятиям, и коренное изменение нашего представления о нем разрушает все здание теоретической физики, как карточный домик. И в этом крахе не уцелеет ничего».

Участь «абсолютной одновременности» и «абсолютного времени» постигает понятия «абсолютного движения», «абсолютного расстояния». Все они теряют смысл. Теперь время, движение, расстояния можно рассматривать только в рамках каждой конкретной инерциальной системы отсчета [106], то есть становятся относительными. Хофман пишет: «И видимо, эту „эпидемию относительности остановить невозможно. Скорость, ускорение, сила, энергия — все эти понятия (и не только они) зависят от времени и расстояния; таким образом, изменилась сама структура физики».

Но если это так, спрашивается, каким образом можно рассматривать в рамках одной инерциальной системы отсчета процессы, происходящие в другой? Для этого Эйнштейн самостоятельно приходит к уравнениям преобразования Лоренца.

Например, формула 

показывает, во сколько раз процессы в теле, движущемся со скоростью v относительно некоторой инерциальной системы отсчета, протекают медленнее, чем в данной инерциальной системе. Подобные формулы вводятся для длины и массы. Одним из важнейших достижений Эйнштейна считается то, что он ввел в качестве универсальной постоянной во все основные законы физики скорость света в вакууме, сейчас обозначаемую буквой с. Также необходимо отметить, что в конце статьи ученый благодарит Микеланджело Бессо, своего друга, с которым он познакомился в Цюрихе и который был принят на работу в Бюро патентов по настоянию Альберта: «В заключение я хотел бы сказать, что, работая над исследуемой здесь проблемой, я опирался на преданную помощь моего друга и коллеги М. Бессо и обязан ему несколькими предложениями».

В конце сентября Эйнштейн отправил в «Annalen der Physik» еще одну трехстраничную статью-дополнение «Зависит ли инерция тела от содержащейся в нем энергии?». В ней ученый на основании уравнений из своей предыдущей статьи вывел формулу, в которой связывал энергию, выделяемую телом, с изменением его массы:

?m=E/c2

Формула выведена для выделения энергии в виде света, но Эйнштейн предполагает ее универсальность — независимость от формы выделяемой энергии. Также в этой статье ученый настаивает на том, что любая энергия обладает массой. Только через два года он смог сделать обратный вывод: всякая масса обладает энергией. Энергия и масса эквивалентны. Следующий шаг — знаменитая формула:

Е =тс2

Эта формула позволила свести воедино законы сохранения энергии и массы. Свои рассуждения и выводы Эйнштейн опубликовал в 1907 году.

Пожалуй, первым крупным ученым, который оценил значение специальной теории относительности, стал Макс Планк. Летом 1907 года маститый немецкий физик написал 28-летнему работнику Бюро патентов длинное письмо, в котором были следующие строки: «Я, вероятно, отправлюсь в будущем году в горы в окрестностях Берна. Пусть это произойдет еще не скоро, но сама мысль об удовольствии лично с Вами познакомиться делает меня счастливым».

В одной из своих лекций Планк сказал: «Концепция времени Эйнштейна превосходит по смелости все, что до этого было создано в умозрительном естествознании и даже в философской теории познания».

Несмотря на такую поддержку со стороны именитого ученого, идеи Эйнштейна были признаны далеко не всеми учеными и далеко не сразу. Неожиданного единомышленника и последователя Эйнштейн нашел в лице своего бывшего преподавателя Германа Минковского. Интересно, что во время учебы в Цюрихском политехникуме Альберт часто пропускал лекции Минковского, а тот, в свою очередь, считал его лентяем. Но это не помешало преподавателю по достоинству оценить достижения своего нерадивого студента через несколько лет.

После Политехникума Минковский преподавал в Геттингенском университете. В 1909 году этот замечательный человек умер, успев математически развить теорию относительности и разработать ее геометрическую интерпретацию. Он создал понятие

«пространственно-временной континуум», называемое также «миром Минковского». В сентябре 1908 года в докладе перед конгрессом естествоиспытателей в Кельне Минковский, в частности, сказал: «Представления о пространстве и времени, которые я собираюсь развить перед вами, выросли на почве экспериментальной физики. В этом заключается их сила. Они приведут к радикальным следствиям. Отныне пространство само по себе и время само по себе полностью уходят в царство теней, и лишь своего рода союз этих понятий сохраняет самостоятельное существование».

Понять масштаб славы, которая обрушилась на Эйнштейна, поможет такой факт: в наше время 17-й том «Annalen der Physik», в котором были опубликованы три исторические статьи ученого, стал предметом вожделения коллекционеров-библиофилов. Немногие библиотеки, в которых сохранился экземпляр этого издания, обычно хранят его с особой бдительностью. Но популярность и слава пришли позже. Мы же вернемся к событиям 1905–1907 годов, когда идеи Эйнштейна привлекли внимание научного мирового сообщества, но до признания было еще далеко.

Данный текст является ознакомительным фрагментом.