1.16 Начальный теоретический и научный вклад
1.16 Начальный теоретический и научный вклад
Советская ракетная, а за ней и космическая техника развивалась и совершенствовалась неразрывно с прикладной наукой в этой области. Эта деятельность началась практически в процессе освоения немецкой ракеты «Фау-2» в средине 40–х, а с годами наращивалась вширь и вглубь. Конструирование сопровождалось анализом, поиском и новыми более совершенными решениями, которые подтверждались экспериментами. Именно такой научно–обоснованный подход позволил Королеву и его соратникам сравнительно быстро, всего за 10 лет, продвинуться вперед и вверх, от ракеты к ракете постигая совершенство и увеличивая дальность полета, доведя ее до 10—12 тыс. км. Прежде всего поэтому мы первыми вырвались за пределы Земли, поначалу далеко оторвавшись от своих потенциальных соперников. Не случайно за создание «образцов новой техники», как это называлось в открытых документах и публикациях, инженерам, отличившимся в новых разработках, стали присваивать научные звания. Докторами и кандидатами стали сам Королев, его замы и ряд ведущих специалистов. Для рядовых сотрудников открывалась возможность поступать в аспирантуру, очную, а гораздо чаще — заочную, то есть без отрыва от основной работы в КБ. Получение научных званий приобрело большой практический смысл, после того как по знаменитому указу Сталина все ученые страны получили огромные привилегии. Преподаватели вузов, имевшие ученые степени, а также доктора и кандидаты наук в НИИ и КБ, которые создавали новую технику и специальными постановлениями включались в списки привилегированных организаций, стали получать гораздо большую зарплату, продолжительный отпуск и продвижение по службе. Так что затраты времени и усилий на подготовку и защиту диссертации могли окупиться с лихвой, игра стоила свеч. Тогда и родилась почти научная поговорка: ученым можешь ты не быть, а кандидатом быть обязан.
Дополнительно специалист, защитивший диссертацию, как летчик–истребитель времен войны, лично сбивший вражеский самолет, или солдат, гранатой подбивший «свой» танк, самоутверждался этим личным достижением на фоне общих успехов всей кампании.
Для меня, выросшего в вузовской среде, стремление к науке если уж не было впитано с молоком матери, то вдохновлялось повседневным примером отца.
Еще до окончания аспирантуры в ИМАШе, где пришлось заниматься трением в космическом вакууме, в связи со стыковкой я погрузился в теорию движения свободных твердых тел.
Развитие ракетной, и особенно космической, техники дало мощнейший толчок развитию теоретической механики. Термех начинается с изучения движения материальной точки, этот раздел древнейшей науки лег в основу теории, с помощью которой рассчитывается движение центра масс ракеты. У нас эта научно–инженерная дисциплина называется баллистикой. С началом космической эры наши баллистики из ОКБ-1 перешли в бесконечный, как сам космос, мир небесной механики. Для управления ракетой и космическим аппаратом необходимо применение более сложного раздела термеха — теории движения твердого тела. Для решения новых практических задач эта область классической механики потребовала более детальной теоретической разработки. Ученые и инженеры фактически впервые столкнулись с действительно свободным твердым телом только в космическом пространстве. При разработке системы управления космическими аппаратами, их ориентацией и маневрированием на орбите не обойтись без теории движения твердого тела в трехмерном пространстве, без нее здесь, можно сказать, делать нечего. Наши управленцы, а вслед за ними ученые и инженеры из НИИ-88 — нашей альма–матер, из НИИ AT под руководством Н. А. Пилюгина — главного управленца–ракетчика, из НИИ-4 — наших военных союзников, из НИИ-1 и Института прикладной математики (ИПМ) АН СССР под руководством М. В. Келдыша, известного как главный теоретик космонавтики, а также многие другие организации, целые институты и отдельные ученые очень много сделали как для решения практических задач, так и для развития общей теории расчетов. Постепенно в РКТ и в стране в целом сложилась школа выдающихся ракетно–космических механиков, со многими из которых мне пришлось позднее работать.
В огромном управленческом отделе Б. В. Раушенбаха, переведенном в ОКБ-1 из НИИ-1 в начале 1960 года, также было много сильных механиков. Я уже упоминал моих коллег В. Бранца и Е. Токаря, а И. Шмыглевский и Б. Скотников внесли большой вклад в разработку теории и практики орбитального сближения. Позднее Бранец и Шмыглевский детально разработали теорию так называемых кватернионов — четырехстепенных матриц преобразования трех угловых координат твердого тела из одной системы координат в другую. Казалось бы, эта чисто математическая избыточность давала лишь возможность при вычислениях обходить подводные камни — так называемые особые точки. Когда несколько лет спустя на борту космических аппаратов появился компьютер, теория стала научным и математическим фундаментом построения и математического обеспечения навигационных задач, решаемых системами управления космических кораблей «Союз–Т» и «Союз–ТМ», их более поздних модификаций.
Приступив к созданию стыковочного механизма, я соприкоснулся с проблемами движения и взаимодействия двух твердых тел, с чего началось мое проникновение в теоретическую сферу. В последующие годы подобные задачи мне приходилось решать применительно к робототехнике и другим комплексным инженерным проблемам, которые относятся и к механике, и к математике — двум фундаментальным научным дисциплинам, взаимно дополняющим друг друга. Помню, как в Алма–Ате, где в начале 80–х проходил Всемирный конгресс по теоретической механике, были расставлены указатели: «На конгресс математиков». Мы пытались протестовать. Нам же резонно возражали: какие вы механики, настоящие механики, механизаторы сельского хозяйства, съедутся только через неделю.
Еще одни узы, на этот раз — брачные, связали меня с теоретической механикой. Получилось так, что моя жена Светлана, как и я окончившая МВТУ и успевшая целый год проработать у «самого» Пилюгина, попала в Лестех и в течение 30 лет преподавала там термех. А начиналось это так. После рождения нашего сына Антона мы жили рядом с институтом, снимая небольшую комнату у дальнего знакомого со звучной фамилией Матюкевич. Когда Антону исполнился год, мы стали рассматривать варианты дальнейшей научной карьеры молодой мамы. В конце августа 1961 года я встретил на улице своего старинного соседа и приятеля Григория Шубина, работавшего тогда заместителем декана. Он сказал, что кафедре термеха как раз срочно требуется ассистент. На мои сомнения о готовности молодой женщины быстро переключиться от пеленок к теоретическим задачам замдекана обещал дать целый месяц на переподготовку. Через неделю, прорешав несколько десятков задач по статике, мы втолкнули перепуганную Светлану в аудиторию, заполненную ее одногодками, студентами–вечерниками. После этого, по меньшей мере в течение года, когда засыпал Антон, нам пришлось провести не один вечер над задачами по статике, кинематике и, конечно, динамике. Повторение — мать ученья. Во время сессий я иногда заходил на кафедру и для ускорения участвовал в приеме экзаменов у студентов, в общем, стал почти членом кафедры. Помню, как на 40–летие жены, когда собрались все ее коллеги, я даже произнес тост за «молодое твердое тело», чем привел в восторг таких же молодых и непосредственных, но уже опытных преподавателей и ученых–механиков.
Заведующий кафедрой А. Г. Пилютик, бывший работник НИИ-88, настойчиво добивался того, чтобы Светлана занималась научной работой и готовилась к защите диссертации. Такова была общая политика в высшей школе, весьма заинтересованной в повышении уровня своих преподавателей. Между прочим, в 1959 году в Лестехе образовали дополнительный «нелесной» факультет, который стал готовить специалистов в области РКТ для такого могучего соседа, каким к этому времени оказался Королев. Мне еще предстоит рассказать об этом подробнее. Для настоящей науки у Светланы не хватало двух качеств: упорства и честолюбия. Много лет спустя я утешал ее: наш сын Антон — это твоя кандидатская диссертация, а дочь Катерина -докторская. Не продвинувшись в науке, Светлана тем не менее стала хорошим преподавателем — темпераментным, заинтересованным и справедливым. В общем студенты, ее любили.
И все?таки главным, что связало меня с задачами теоретической механики, оказалась работа над анализом, синтезом и испытаниями различных механизмов, от сравнительно простых приводов и рулевых машин до целых механических систем. Когда мы приступили к проектированию стыковочного механизма, задача движения и взаимодействия двух твердых тел стала моей первой полномасштабной теоретической разработкой. Для космической стыковки требовалось создать многостепенную амортизационную систему, которая должна гасить энергию, амортизировать столкновение двух многотонных космических аппаратов, двух тяжелых свободных тел. Без математической модели, без системы дифференциальных уравнений здесь не обойтись.
Стыковка начинается с удара одного космического аппарата о другой. Сравнительно короткая фаза стыковки от первого соударения до соединения кораблей связана с динамикой и требует специального анализа. Однако подробная модель динамики стыковки настолько сложна, что разобраться в отдельных деталях оказывается трудно. С полным правом можно сказать, что «за деревьями леса не видно». С другой стороны, нам, конструкторам стыковочного механизма, требовались для расчета более простые и наглядные методы. Если ты не способен разобраться в своем деле, тебя не только перестанут уважать другие, ты потеряешь уважение к себе. Такие соображения заставили меня искать более простые решения.
Теория удара — один из разделов теоретической механики, который начинается с удара материальной точки. Стыковка — это удар двух свободных твердых тел. Поэтому теория, математическая модель движения и взаимодействия при стыковке существенно сложнее. Мне удалось где?то откопать работу известного российского механика и основоположника современной аэродинамики Н. Е. Жуковского, посвященную удару двух абсолютно твердых тел. Его основная идея заключалась в том, чтобы произвольный удар двух тел свести к удару двух материальных точек. Масса этих точек определялась их моментами инерции и геометрическими характеристиками. Таким образом, сложная исходная модель со многими степенями свободы сводилась к существенно более простой приведенной модели.
В классической механике удар определяется как явление, в котором время взаимодействия пренебрежимо мало, а скорости изменяются мгновенно. При стыковке такое предположение очень условно. Более реально рассматривать процесс, когда время взаимодействия конечно. Тем не менее идея Жуковского подтолкнула меня к разработке методов расчленения задачи на более простые составные части, позволившие рассчитывать пространственные амортизационные системы почти как простые, одностепенные амортизаторы.
После некоторых размышлений и прикидок оказалось, что идею Жуковского можно использовать для создания подобной, но более детальной модели, причем она не только получилась изящной, но и гораздо точнее описывала реальный процесс — стыковку. В целом вместо громоздкой системы дифференциальных уравнений задача сводилась к более простым уравнениям деформации амортизаторов, в простейшем случае — к одному уравнению. Для расчета важнейших параметров стыковочного механизма оказывалось достаточным использовать алгебраические уравнения.
Прежде всего, благодаря сравнительной простоте и наглядности новая математическая модель динамики стыковки оказалась действительно эффективной для проектирования амортизаторов стыковочных механизмов. Это было как раз то, что нам, конструкторам, требовалось для расчетов, но не только.
Дополнительно новая математическая модель подсказывала концепцию стендов для испытания амортизаторов стыковочных механизмов. Стенд, рассчитанный по новой теории и построенный на азовском заводе, содержал материальную тачку, масса которой равнялась массе материальной точки в эквивалентной модели. Эта тачка разгонялась по рельсам и ударялась в амортизатор со скоростью, близкой к скорости стыковки кораблей в космосе. Более сложный стенд, позднее спроектированный и построенный в Казани, имел тачку уже с двумя степенями свободы: дополнительный качающийся груз упрощенно воспроизводил угловое движение кораблей при стыковке. Все параметры стенда определялись по той же теории приведения исходной, полной модели к упрощенной, эквивалентной. Так, опираясь на идею классика, удалось разработать модель, имевшую общетеоретическое и прикладное значение. Как упоминалось, при модификации стыковочного механизма для лунной программы Л1, который изготавливался на казанском ОМЗ, его амортизаторы тоже рассчитывались по новой теории. Забегая вперед, скажу, что в 70–е годы мне удалось развить эту теорию и сделать модель более универсальной, распространив ее на пространственное движение.
Где динамика — там наука, дифференциальные уравнения, результаты в виде замысловатых графиков и загадочных кривых. «Чтобы тебя уважали, нужно, чтобы тебя немного не понимали», — сказал один ученый мудрец. Это всегда привлекало и будет привлекать. Таков один из стимулов науки, который притягивал и будет притягивать способных и честолюбивых молодых людей.
Хорошо, когда все эти внешние факторы сочетаются с потребностями практики. Говорят, что отрицательный результат иногда может стать научным достижением. Если это и так, то очень редко. В инженерном деле — тем более, нужен только положительный результат, позитивный вклад в создание конструкции и в отработку операций, такой, чтобы машина летала, маневрировала, стыковалась.
В этом смысле мне повезло: разработанная теория и практика конструирования составили единое целое. Безусловно, я был, прежде всего, доволен тем, что при помощи новых математических методов удалось заложить теоретические основы для решения целого ряда насущных практических проблем. Все, что требовалось для полноценной диссертации, сложилось. В итоге получилась настоящая прикладная научная работа со всеми ее необходимыми атрибутами: актуальностью задачи, поставленной практикой, многогранной новизной, оригинальной методикой теоретического и экспериментального анализа, теоретическими результатами, подтвержденными экспериментом, ценностью полученных результатов как для теории, так и для практики, в том числе для будущих разработок, для полета и стыковки в космосе.
В ОКБ-1 и у наших смежников было немало хороших примеров, ведь, как говорилось в начале рассказа, советская РКТ развивалась бурно вместе с прикладной наукой, и во многом благодаря последней, которая освещала дорогу практике «в потемках» неизведанного. Настоящим примером стал Е. Токарь, его основная тема — космическая гироскопия — была очень научной, и он рано стал кандидатом, а на защите его докторской диссертации мне удалось побывать, несмотря на барьеры секретности. В тот период наш продвинутый коллега уверенно шел от победы к победе, как в теории, так и на практике. Однако далеко не у всех хватало нужных качеств, прежде всего, упорства и, наверно, честолюбия. Были и такие, у которых действительно не было времени; это относилось, прежде всего, к самому Королеву.
Был ли Королев настоящим ученым? Я уже задавал этот риторический вопрос в связи с тем, что некоторые авторитеты отвечали на него отрицательно.
Многогранной деятельности нашего Главного конструктора были свойственны все признаки научного подхода настоящего ученого, который сосредоточивал все свои усилия на достижении поставленных целей кратчайшим путем. С другой стороны, он не мог и не давал себе возможности распылять силы, отвлекаться на второстепенное, на то, что могли выполнить другие. Что касается признаков научного подхода, они прослеживаются во всех его многочисленных проектах, от начальных до самых зрелых, на всех этапах их осуществления, от начала и до конца. После войны эта линия начиналась с первых модификаций немецкой ракеты Фау-2, а позднее прослеживалась и в космических проектах. Характерным и существенным являлось то, что все основные проекты были взаимно увязаны, последующие разработки становились продолжением предыдущих. В результате такого, по–настоящему научного, подхода рационально и в очень короткие сроки были получены принципиально новые выдающиеся результаты, присущие только уникальным достижениям.
Одновременно с разработками появлялись методы проектирования, испытаний и эксплуатации создаваемых конструкций, а ведь принципиальное отличие прикладной науки от разработки очень хорошей, пусть самой лучшей ракеты, как раз и состоит в том, что в результате научной работы рождаются прежде всего принципы и методы создания новых, еще более совершенных изделий.
Ученый не только тот, кто пишет много длинных и запутанных формул.
Ясная постановка задачи, всесторонне обоснованная путем анализа всего предыдущего опыта и всей имеющейся информации, включая зарубежную, выбор оптимальных или рациональных технических решений с учетом необходимых сроков завершения проекта, располагаемой технологии и других ограничений всегда, на протяжении всей его деятельности отличали Королева. Так действовал он сам, так заставлял и учил он работать своих многочисленных подчиненных и соратников.
Надо сказать, что Королев не только полагался на своих специалистов, но и сам хорошо понимал существо основных процессов и соотношения между определяющими параметрами сначала планеров, затем ракет и в конце концов космических аппаратов, и пользовался этим для собственных оценок. Это позволяло ему быстро оценивать предложения других и обосновывать свое мнение.
Так получилось, что Королев оставил после себя совсем не много чисто теоретических трудов, с математическими выводами, уравнениями и формулами, но они все?таки есть и говорят сами за себя. В течение короткого времени он читал лекции на Высших инженерных курсах в МВТУ с целью переподготовки специалистов для ракетной техники. Эти лекции, под названием «Основы проектирования баллистических ракет дальнего действия», напечатанные в виде секретного научного пособия, заложили фундамент преподавания этой дисциплины на многие годы. Так что Королев вполне мог бы стать профессором, хотя ему так и не присвоили этого научного звания, а ведь позднее он успешно руководил аспирантами, которые сами становились и кандидатами, и докторами.
Об этом и о многих других научных трудах Королева можно прочесть в двух хороших книгах: «Творческое наследие Королева» (1980) и «Королев и его дело» (1998), которые в своей основе составлены на подлинных документах. Об одной из них уже упоминалось. Инициатором изданий и составителем этих книг стал Г. С. Ветров, сам ракетчик–управленец, доктор технических наук, под конец своей научной карьеры сделавший для всех нас хорошее, очень нужное дело.
Королев не мог позволить себе читать лекции по теории колебаний, как это делал Челомей, считавший себя единственным генеральным конструктором–теоретиком. Может, так оно и было, ведь многие из его проектов заканчивались на бумаге.
Конечно, порой Королев, как прагматик, был вынужден маневрировать, отступать от своей генеральной линии, а к этому его принуждали обстоятельства, необходимость лавировать в нередко мутной воде высшей политики и противоречий; иначе ему никогда бы не удалось столько сделать. Особенно это относилось к 60–м, эпохе волюнтаризма, и не только Хрущева. Известно также, что Королев на своей «семерке» согласился запустить первый спутник Челомея «Полет», а позднее, помогая ему осваивать военный космос, направил в его ОКБ-52 эскизный проект «Союза» в полном составе, и даже лично выдвинул своего оппонента и соперника в академики.
Диапазон научных интересов Королева был очень широк. Они проявились и в большом, и в малом, начиная с обоснованной программы освоения космоса, создания целых серий ракет–носителей и космических кораблей, кончая деталями, казалось, мелочами, которые в какой?то момент становились важнейшими, определяющими. К большому сожалению, программы полета человека к другим планетам, о которых он так мечтал, ему не суждено было осуществить.
Так что у меня нет никаких сомнений в том, что Королев был во всем настоящим: и настоящим ученым, и настоящим конструктором, и еще много кем настоящим, даже… артистом.
Но Королев — исключение, он — гений, хотя и не защитил ни одной диссертации.
Диссертация действительно требовала очень много времени, которое по–настоящему занятым заочным аспирантам приходилось буквально выкраивать. По моим многолетним наблюдениям (когда уже сам стал руководить аспирантами), защищались, как правило, самые упорные, а не самые способные. С другой стороны, самостоятельная работа над диссертацией давала очень много творческому человеку, делала из инженера настоящего ученого.
Учитывая занятость инженеров, втянутых в создание новой техники, а также нашу человеческую натуру, идеологи советской науки решили дать им послабление: ведущим специалистам — руководителям новых разработок, которые продвигали эту технику на передовой уровень, и у которых, как полагали, не было времени заниматься чистой наукой, дали возможность предоставлять диссертацию в так называемой форме научного доклада. Такую форму получения ученых званий ввела ВАК (Высшая аттестационная комиссия), которая функционировала при Совете министров СССР. Доклады писались в сравнительно краткой форме, как правило, без детальных теоретических выкладок, без математических моделей и моделирования.
На настоящую диссертацию требовалось, конечно, гораздо больше времени.
Скоро сказка сказывается, да не скоро дело делается… Сначала разработка теории шла у меня довольно медленно: новое требовало осмысления, да и времени не хватало, теоретическим делом приходилось заниматься между делом. Все же к средине 1966 года основы новой теории сформировались. Длинными зимними вечерами диссертация была написана, и теперь ее требовалось оформить и представить к защите. В этом всем нам, соискателям научных званий, очень помогал Г. А. Степан, наш первый кандидат технических наук и незаменимый ученый секретарь совета, защитивший диссертацию еще до моего прихода в ОКБ-1. Несмотря на его помощь, на самом финише это тоже оказалось совсем не быстро и не просто.
Один из моих учителей, о котором рассказ впереди, скажет: защита диссертации требует режиссуры. Обычно режиссером становится научный руководитель. Мой руководитель профессор И. В. Крагельский не мог меня по–настоящему поддержать, так как я отошел от научных проблем, связанных с трением в космосе, и наши пути разошлись. Надо отдать ему должное, в решающий момент Игорь Викторович согласился с моими аргументами и помог мне тем, что договорился с академиком А. Ю. Ишлинским: в его Институте проблем механики АН СССР не только дали заключение о решении частной проблемы механики в области орбитальной стыковки. Александр Юльевич выделил из своих научных рядов доктора Г. К. Пожарицкого, в лаборатории которого в те годы начали заниматься теорией игр. Как сказал один знаменитый ученый, «наука — это наилучший способ удовлетворить свое любопытство за счет государства», а в игры играют не только в науке, но и в политике. Там мне пришлось докладывать о своей старомодной механической теории, правда, в современном приложении. После моего доклада на титульном листе диссертации под строками о научном руководителе появилась запись: «Научный консультант». Академия наук дала «добро».
Следующая проблема, которую пришлось решать, — борьба научных школ местного значения. В те годы в нашем КБ А. В. Никифоров, о котором я уже упоминал, руководил разработкой полной модели динамики стыковки, а его подразделение отвечало также за полную физическую модель — комплексный стенд с макетами космических аппаратов, подвешенными на тросах. Мы с Александром одногодки, он заканчивал ту же школу, но на год позже, а затем — МВТУ. В ОКБ-1 он сразу попал в проектный отдел и это подняло его над нами, системщиками. Мы вместе поступили и на вечерний мехмат МГУ, правда, ему не удалось его окончить. Он вскоре женился и, видимо, не смог совместить эти два дела, требовавших и сил, и упорства.
Узнав о моей диссертации, Никифоров долго не мог прийти в себя: как это так, простой конструктор, пусть даже — стыковочного механизма, обошел его, проектанта, руководившего решением проблемы в целом. Я пытался убедить Александра в том, что обе задачи, обе научные и технические сферы, обе школы дополняют друг друга, каждая имеет право на жизнь. Однако ему было трудно смириться с тем, что моя диссертация обошла его научную работу. Мне пришлось предпринять еще одно действие.
Научным руководителем Никифорова был известный профессор МВТУ К. С. Колесников, ныне академик РАН. Будучи заведующим кафедрой термеха, он занимался различными прикладными задачами в области РКТ, издал несколько хороших книг. При Королеве Колесников работал в ОКБ-1 консультантом, был членом нашего ученого совета. Я попросил его дать отзыв на мою диссертацию. Константин Сергеевич согласился и, отметив недостатки, подсказанные соперничающей стороной, внес свой вклад в решение острого конфликта.
Первая автоматическая стыковка осенью 1967 года стала последним весомым блоком в мое научное здание и дала дополнительный повод форсировать события. Однако в конце 1967 года в нашем ученом совете образовалась очередь, почти как за всеобщим дефицитом в те времена. Мне пришлось пропустить вперед своих начальников — Вильницкого и Кузьмина, которые защищали диссертации, представленные в той самой привилегированной форме научного доклада.
У наших больших и не очень больших руководителей периодически возникала еще более простая возможность получить ученую степень. Для этого требовалось стать участником эпохального события, например запустить первый спутник или первого человека в космос — тогда этого было достаточно, чтобы попасть в нужный список. У нас в ОКБ-1 таких докторов и кандидатов оказалось, если не ошибаюсь, 17, среди них — наш Калашников. Он очень переживал, что попал только в нижнюю половину итоговой «таблицы» и не стал доктором. Особенно он расстроился, когда на эту старую рану попала новая соль. Его коллега по рулевым машинам Федор Федорович Фалунин, уехавший вместе с Янгелем в Днепропетровск, тоже решил «остепениться», представив свой научный доклад. Когда все было готово к защите, обнаружилось, что у соискателя не сданы кандидатские экзамены. Кто?то мудро посоветовал квалифицировать работу как докторскую. В этом случае сдачи кандидатского минимума не требовалась. Перед защитой Калашников, который ревностно относился к успехам своих приятелей и подчиненных, долго приставал к Фалунину: «Федя, а доктор — это для тебя не много?» «Наверно — много, но я ведь языков не знаю», — отвечал тот, имея в виду свой немецкий.
Изощренность настоящих ученых не имела границ. «В науке нет широкой столбовой дороги, и только тот достигнет ее сияющих вершин, кто, не страшась опасностей, карабкается по ее каменистым тропам», — сказал Карл Маркс еще в позапрошлом веке. При социализме марксизм стал наукой всех наук. Все мы сдавали кандидатский экзамен по марксистской философии — науке, действительно оказавшейся всесильной. В кандидатский список докторов и кандидатов наук «за спутник» в конце концов попал секретарь парткома ОКБ-1, но не совсем прямым путем, не по столбовой дороге, а несколько иначе. «По положению», список должен был подписать партийный руководитель. Срок подачи заявки истекал, а визы все не было. «Почему должен страдать целый коллектив», — сказал кто?то очень мудро (по слухам им был действительно мудрый Эдуард Иванович Корженевский) и посоветовал: давайте включим нашего местного «генерального» секретаря. Маневр сработал эффективно, безотказно и быстро, никто не пострадал.
В любом большом деле нередко возникали мелкие издержки.
Наконец, к концу марта подошла моя «ученая» очередь. Первым официальным оппонентом на защите моей диссертации стал доктор технических наук Б. А. Райсберг, под руководством Королева активно участвовавший в решении многих, связанных с механикой, научно–технических проблем РКТ в период ее бурного развития. Вторым — Г. С. Тамоян, доцент кафедры электрических машин энергетического института. Дело в том, что один из разделов диссертации был посвящен теории ЭМТ — электромагнитных тормозов, о которых рассказывалось и которые действительно оказались новым классом электрических машин. Этот раздел удачно дополнил и расширил исследование, увеличив ценность работы в целом, как для теории, так и для практики.
Тамоян опаздывал к началу заседания, и ученый совет, по предложению Калашникова, ввел дополнительного официального оппонента — известного профессора В. И. Феодосьева, который вместе с моим начальником учился в МВТУ еще до войны. Всеволод Иванович был, можно сказать, вундеркиндом, ученым–механиком широкого профиля и кругозора. В студенческие годы он занимался расчетом приборных мембран, защитил дипломную работу на эту тему, которую сразу признали кандидатской диссертацией. Потом, преподавая сопромат, он написал несколько отличных учебников (и не только по сопромату), по которым училось не одно поколение студентов. Теория тонкостенных оболочек привела его на факультет ракетной техники, и вскоре его назначили деканом. Книга «Основы ракетной техники», написанная им вместе с двигателистом Г. Б. Синяревым и увидевшая свет в 1956 году, долгие годы была единственным учебным пособием для всех, кто учился и кто хотел посвятить себя этой области техники и науки.
Разработанная теория позволила «выжать» из этого «спичечного» ЭМТ 1,5 кВт и на порядок уменьшить его инерционность. В порыве творческого энтузиазма в этом «теоретическом» рассказе одно время мне даже хотелось привести формулу для определения максимального тормозного момента ЭМТ, который оказался пропорциональным энергии постоянных магнитов, а значит магнитной индукции в квадрате хорошо, что я вовремя отдумался.
Так благодаря случайности судьба свела меня с этим замечательным человеком. Позднее он стал для меня более чем дополнительным оппонентом на защите кандидатской диссертации.
Когда выступления на моей защите близились к концу, председательствовавший на заседании С. О. Охапкин (Мишин был в отъезде) спросил, кто еще хотел что?нибудь добавить по ясному, по его мнению, вопросу. Слово попросил мой неофициальный оппонент и стал объяснять, что динамика стыковки не ограничивается проблемой, решенной в диссертации. Охапкин прокомментировал, что в этой новой области еще многое предстоит исследовать. Действительно, через год Александр вполне успешно защитил свою диссертацию на ученом совете в МВТУ, так и не решившись еще раз «стыковаться» с нашим ученым советом.
Ученый совет проголосовал единогласно. Потом был вечер, традиционный для настоящих ученых банкет в «Славянском базаре», говорили хорошие слова и дарили первые весенние цветы.
Стояла ранняя весна, мне только исполнилось 35, вся жизнь была еще впереди, а человек, как известно, начинается с кандидата.
Данный текст является ознакомительным фрагментом.