М. П. Бронштейн. Всемирное тяготение и электричество (Новая теория Эйнштейна) [68]
М. П. Бронштейн. Всемирное тяготение и электричество (Новая теория Эйнштейна)[68]
Создатель теории относительности проф. Альберт Эйнштейн выступил с новой математической теорией, объединяющей в одно целое явления тяготения и электромагнитное поле. Помещены статьи, разъясняющие смысл новой теории, но вследствие их краткости они оказались недоступными пониманию среднего читателя. Для того чтобы понять новую теорию Эйнштейна, необходимо уяснить себе основы общей теории относительности, так как новая теория является непосредственным продолжением и развитием идей Эйнштейна о тяготении, резюмированных им в общей теории относительности. Трудность понимания этих идей происходит от двух причин. Первой причиной является то, что теория Эйнштейна оперирует не с обычным трехмерным пространством и рассматриваемым отдельно от него временем, а с четырехмерной совокупностью пространства и времени, рассматриваемым как некоторое четырехмерное «пространство». Точками такого четырехмерного пространства являются не обычные пространственные точки, а так называемые «события», т. е. точки пространства, рассматриваемые в определенный момент времени. Весь мир теории относительности является четырехмерной совокупностью таких «событий», охватывающей собою прошлое, настоящее и будущее.
Получить наглядное представление об этом четырехмерном слиянии пространства и времени возможно при рассмотрении более простого случая, когда пространство, соединяемое с временем, было первоначально не трехмерным, а одномерным. Примером может служить хотя бы такая известная всем вещь, как график железнодорожного движения. Проведем на листе бумаги две взаимно перпендикулярные прямые (оси координат).
Рис. 1 Рис. 2
Первая прямая представляет изображение железнодорожного пути, вторая является той осью, на которой откладываются в известном масштабе промежутки времени. Рассмотрим какую-нибудь точку этой диаграммы, например обозначенную цифрой 1 (рис. 1). Опустим из этой точки перпендикуляры на обе оси. Перпендикуляр, опущенный на ось, изображающую железнодорожный путь, пересечет ее в точке А, а перпендикуляр, опущенный на ось времен, пересечет ее в точке, соответствующей какому-нибудь определенному моменту времени, например 4 часам пополудни. В этом случае говорят, что точка 1 соответствует событию, происходящему в 4 часа пополудни в точке А железнодорожного пути. Если по железнодорожному пути перемещается поезд, то на диаграмме возможно начертить линию, точки которой соответствуют событиям, заключающимся в прохождении поезда в определенные моменты времени через определенные места железнодорожного пути. Такая линия начерчена на рисунке. Из нее видно, что в 4 часа пополудни поезд был в точке A, в 5 часов пополудни он был в точке Б (это «событие» изображается на диаграмме точкой 2) и т. д. Построение железнодорожных графиков известно каждому школьнику. Легко видеть, что если поезд двигался по железнодорожному пути с постоянной скоростью, то график его движения изобразится на диаграмме прямой линией, если же он двигался не равномерно, то графиком будет служить кривая или ломаная линия.
Четырехмерная совокупность «событий», рассматриваемая в теории относительности Эйнштейна и введенная впервые в эту теорию знаменитым математиком Германом Минковским, представляет полную аналогию с железнодорожным графиком, с той лишь только разницей, что эта четырехмерная совокупность по вполне понятным причинам не может быть изображена графически. Изучающий теорию относительности должен мыслить таким образом, что вместо движения материальной точки в трехмерном пространстве по некоторому пути он сразу представляет себе линию, являющуюся графиком движения этой материальной точки в четырехмерной «диаграмме» Эйнштейна. Подобные представления о четырехмерной совокупности «событий» были развиты Минковским и Эйнштейном уже для «специальной теории относительности», в которой явления тяготения еще не рассматривались. Когда Эйнштейн начал работать над созданием новой теории тяготения (в 1912 г.), ему пришлось ввести новое большое усложнение. Этим усложнением было введение неевклидовой геометрии.
Рассмотрим вкратце, в чем здесь дело, и будем для простоты рассматривать снова не четырехмерную совокупность точек, с которой приходится иметь дело в теории Эйнштейна, а двухмерную, которую возможно изобразить на листе бумаги. Проведем снова две взаимно перпендикулярные оси координат и рассмотрим две точки 1 и 2 на этой диаграмме (рис. 2). Расстояние между точками 1 и 2 можно вычислить с помощью теоремы Пифагора, если даны так называемые «проекции отрезка 1 2 на координатные оси», т. е. катеты прямоугольного треугольника 12 3, проведенные параллельно координатным осям. Квадрат длины отрезка 1 2 равен сумме квадратов его проекций 1 3 и 2 3. Теорема Пифагора даст возможность вычислять длину также и любой кривой линии, проведенной на диаграмме. Для этого нужно разбить кривую линию на ряд таких мелких частей, что каждая из этих частей может приближенно рассматриваться как отрезок прямой линии (бесконечно малая дуга может быть заменена своей хордой). Вычислив длину каждого бесконечно малого отрезка прямой линии, равную квадратному корню из суммы квадратов проекций этого отрезка, мы можем сложить полученные результаты и найти таким образом длину всей кривой линии. Такое вычисление длины кривой, опирающееся на теорему Пифагора, является необходимым следствием геометрии Евклида.
Неевклидова геометрия, начало созданию которой положили сто лет тому назад Лобачевский, Гаусс и Болиаи и которая была приведена в более совершенную форму гениальным немецким математиком Берн-хардом Риманом, представляет непосредственно обобщение геометрии Евклида. Вместо того чтобы вычислять квадратный корень из суммы квадратов проекций бесконечно малого отрезка, как это делается в геометрии Евклида, неевклидова геометрия вычисляет квадратный корень из более сложного выражения, являющегося суммой не только квадратов бесконечно малых проекций, но и произведения этих проекций, причем в этой сумме каждый квадрат и произведение предварительно умножается на некоторый коэффициент. Таким образом, евклидова геометрия является тем частным случаем неевклидовой геометрии, который получится, если коэффициенты при квадратах проекций равны единице, а коэффициенты при произведении равны нулю. В неевклидовой же геометрии эти коэффициенты могут принимать различные значения в разных точках пространства. Легко видеть, что если даны значения этих коэффициентов во всех точках пространства (или, как сказал бы физик, задано «поле» этих коэффициентов), то возможно вычислить длину любой кривой линии, проведенной в этом неевклидовом пространстве. Все другие геометрические величины (углы, площади, объемы и т. д.) также возможно вычислить с помощью тех же коэффициентов, которые, таким образом, приобретают первостепенное значение для геометрических свойств неевклидова пространства. Ими, как говорят, определяется «метрика» пространства, т. е. результаты всех производимых в нем измерений. Коэффициенты эти получили довольно громоздкое название «компонентов метрического фундаментального тензора». Понятно, что вся суть заключается именно в этих компонентах. Если между двумя точками проведены две кривые линии, то, например, вопрос о том, которая из них короче, может быть решен только в том случае, если заданы значения компонентов метрического фундаментального тензора в каждой точке. Линия, которая не оказалась бы кратчайшим расстоянием между двумя точками в пространстве евклидовом, где все компоненты метрического фундаментального тензора равны или нулю или единице, может оказаться кратчайшей линией, если задано какое-нибудь другое распределение этих компонентов в пространстве, соответствующее неевклидовой геометрии.
Идея Эйнштейна, примененная им к изучению полей тяготения, заключалась в том, что четырехмерная пространственно-временная совокупность точек-событий не должна обязательно являться евклидовой, а может быть и неевклидовой. Если в какой-нибудь области пространства отсутствует поле тяготения, то согласно Эйнштейну геометрия четырехмерной пространственно-временной совокупности может считаться евклидовой. В этом случае материальная точка, на которую не действуют электромагнитные силы (т. е. не действуют никакие силы вообще, так как, кроме сил тяготения, все известные в физике силы сведены к электромагнитным), то рассматриваемая точка будет двигаться согласно закону инерции равномерно и прямолинейно.
До Эйнштейна полагали, что роль сил тяготения принципиально не отличается от роли электромагнитных сил, т. е. что действие тех и других сил состоит в сбивании материальной точки с того кратчайшего пути, по которому она двигалась бы в отсутствие сил. Эйнштейн решил этот вопрос совершенно новым и неожиданным образом. Если под силами подразумевать те причины, по которым график движения материальной точки перестает быть кратчайшей или прямейшей линией, то загадка сил тяготения получает следующее парадоксальное разрешение: сил тяготения вообще не существует! существует только свойство тяжелых тел создавать вокруг себя такие неевклидовы свойства пространства, такое, как говорят, «искривление» пространства, благодаря которому материальная точка движется в отсутствие электромагнитных сил не по тем линиям, по каким она бы двигалась в случае евклидовой метрики, а по другим.
Из предыдущего ясно, что поле тяготения является в эйнштейновой теории геометрическим свойством пространства, поскольку оно может быть вычислено по значениям тех коэффициентов, которыми определяется длина проведенных в четырехмерном пространстве Эйнштейна—Минковского кривых линий. Заслуга Эйнштейна заключается в том, что он нашел закон, которому должно удовлетворять поле этих метрических коэффициентов в четырехмерном пространстве («закон тяготения Эйнштейна»). Роль материи сводится к тому только, что присутствие материи вызывает искривление пространства и нарушение первоначальных евклидовых его свойств. Отсюда ясно, что в теории относительности Эйнштейна электромагнитные силы и силы тяготения играют принципиально различную роль: силы тяготения вытекают непосредственно из геометрических свойств четырехмерной пространственно-временной совокупности точек-событий, между тем как электромагнитные силы не имеют ничего общего с геометрией и не могут быть вычислены по заданным значениям компонентов метрического фундаментального тензора.
Такое различие между электромагнитными и гравитационными силами считалось недостатком теории, и многие исследователи пытались создать такую теорию электромагнитного поля, в которой электрические и магнитные величины вычислялись бы из геометрических свойств пространства-времени. Одной из попыток такого рода является теория Калуцы (1921 г.). Вместо четырехмерной совокупности точек Калуца рассматривал пятимерную, в которой число метрических коэффициентов было поэтому больше, чем в четырехмерной совокупности. Потенциалы электромагнитного поля вычислялись им из этих коэффициентов. Теория Калуцы не имела успеха, хотя его идеи сыграли некоторую роль (пятимерная совокупность точек была снова введена в 1927 г. немецким математиком Оскаром Клейном и русским математиком В. А. Фоком в их математическом истолковании волновой механики Шредингера). К другим попыткам свести электромагнитное поле к геометрическим свойствам пространственно-временного мира принадлежит теория, разработанная цюрихским математиком Германом Вейлем. Эта теория также не смогла удовлетворительно описать электромагнитные явления, как и теория Калуцы. Обе теории удовлетворительно справлялись с уравнениями электромагнитного поля в пустоте, но не могли объяснить законов движения материи в этом поле.
Теория Эйнштейна, о которой идет речь в этой заметке, ставит перед собой такую же самую цель — включение электромагнитного поля в систему чисто геометрических величин. Для того чтобы понять новую теорию Эйнштейна, названную им «единой теорией поля», нужно рассмотреть понятие о параллелизме в неевклидовой геометрии. Пусть в неевклидовом пространстве дана точка 1 и в ней задано некоторое направление (например, направление некоторого бесконечно малого отрезка, начинающегося в точке 1). Пусть через точку 2 того же неевклидового пространства требуется провести отрезок, параллельный заданному бесконечно малому отрезку в точке 1. Простейшим способом является следующий. Соединим точки 1 и 2 геодезической (кратчайшей) линией и будем перемещать вдоль этой линии бесконечно малый отрезок из точки 1 в точку 2 так, чтобы при каждом бесконечно малом перемещении, на которые можно разложить его путь от точки 1 к точке 2, он оставался параллелен самому себе. Ясно, что, придя в точку 2, он будет находиться под тем же углом к касательной, проведенной к геодезической линии, под которым он находился в точке 1. На первый взгляд может казаться, что то положение, которое отрезок принял в точке 2, можно считать параллельным его первоначальному направлению в точке 1. Однако с этим связаны трудности. Если, например, дана, кроме точек 1 и 2, еще и точка 3, то можно было бы переместить бесконечно малый отрезок параллельно самому себе сперва из точки 1 к точке 3 по соединяющей их геодезической линии, а затем из точки 3 к точке 2 по геодезической линии 3 2. Окажется, что после двух таких перемещений бесконечно малый отрезок будет занимать в точке 2 не то положение, какое он имел бы при непосредственном перемещении параллельно самому себе по геодезической линии 1 2, а другое.
Таким образом, понятие параллелизма не может быть обобщено на пространство, обладающее кривизной. Это можно проверить на простом случае шаровой поверхности, которую можно рассматривать, как двумерное неевклидово пространство. Пусть на поверхности шара даны три точки 1, 2 и 3. Соединим их попарно дугами больших кругов (известно, что на поверхности шара дуга большого круга, соединяющая две точки, является кратчайшим расстоянием между ними). Получился сферический треугольник 123. Если в точке 1 проведен какой-нибудь отрезок в касательной плоскости к шару, то его можно переместить вдоль стороны сферического треугольника 1 2 таким образом, чтобы он все время оставался касателен к шару и все время образовывал один и тот же угол с касательной к большому кругу 1 2. Это и будет «перемещение параллельно самому себе» по геодезической линии 1 2. После этого его можно таким же образом «перенести параллельно самому себе» по геодезической линии 2 3, а затем и по линии 3 1. Окажется, что после такого «перемещения параллельно самому себе» по контуру сферического треугольника 123 отрезок не придет в прежнее положение, а образует со своим первоначальным направлением в точке 1 некоторый угол. С помощью элементарной геометрии нетрудно доказать, что этот угол будет равен так называемому « сферическому эксцессу» треугольника 1 2 3, т. е. разности между суммой углов сферического треугольника 1 2 3 и 180 градусами. (Сферический эксцесс треугольника, как доказывается в сферической тригонометрии, пропорционален площади треугольника.) Из этого примера видно, что сохранить на поверхности шара понятие о параллелизме без добавочных условий невозможно.
Новая теория Эйнштейна вводит в неевклидову геометрию понятие о параллелизме следующим образом: в каждой точке четырехмерного пространства проводятся четыре взаимно перпендикулярные направления, образующие в каждой точке как бы систему прямоугольных осей. Про эти оси вводится допущение, что они в разных точках пространства параллельны друг другу. Нетрудно видеть, что для определения положения этих четырех осей необходимо задать в каждой точке значения шести величин, из которых первые три определяют положение первой оси, вторые две — положение второй оси, наконец последняя определяет положение третьей оси, для определения же четвертой оси не нужно задавать добавочных величин, так как достаточно того, что она перпендикулярна остальным осям. Между ними устанавливает Эйнштейн ряд соотношений, которые вводятся для того, чтобы придать понятию о параллелизме определенный смысл и которые, кроме того, должны удовлетворять так называемому «требованию ковариантности». Это требование значит, что соотношения должны иметь одинаковую форму независимо от той координатной системы, с которой связан измеряющий геометрические свойства пространственно-временной совокупности наблюдатель. Требование ковариантности вообще играет основную роль в теории относительности. Оказывается, что выведенным для этих шести величин соотношениям возможно придать другую форму, а именно: определенные комбинации из этих величин возможно назвать (совершенно условно) слагающими электромагнитных сил и сил тяготения. Тогда окажется, что упомянутые соотношения превратятся в такие соотношения между электромагнитными и гравитационными силами, которые совершенно удовлетворительно оправдываются на опыте в случае пустого пространства. В этом заключается важнейший результат новой теории Эйнштейна. Отсюда видно, что электромагнитные силы уже не противопоставляются гравитационным, как это было в общей теории относительности Эйнштейна. Электромагнитные силы, как и силы тяготения, оказываются геометрическими характеристиками четырехмерной пространственно-временной протяженности.
В этом монистическом характере, позволяющем связать геометрию, тяготение и электричество в одно единое целое, заключается главное достоинство новой теории Эйнштейна. Эта теория приводит, таким образом, к своеобразному физическому мировоззрению, о построении которого уже несколько столетий назад мечтал знаменитый французский философ и математик Ренэ Декарт.
Следует сказать, однако, что теория Эйнштейна еще не построена до конца. Так, например, еще не решен вопрос о графиках движения материальных частиц в четырехмерной протяженности точек-событий под влиянием электромагнитных и гравитационных сил. Остается невыясненным, удастся ли на основании новой теории Эйнштейна вывести существование двух противоположных родов электричества и сделать, таким образом, шаг вперед по сравнению с теорией Германа Вейля. Точно так же остается решить вопрос об отношении новой теории Эйнштейна к теории квантов. Прерывный характер явлений, происходящих в чрезвычайно малых объемах, занятых отдельными атомами вещества, указывает с большой вероятностью на то, что эта прерывность должна найти свое отражение в геометрии, и что, таким образом, свойства пространственно-временной протяженности должны иметь квантовый, прерывный характер. Построение такой геометрии пространства и времени, из которой вытекали бы не только законы тяготения и электромагнитного поля, но и квантовые законы,— вот величайшая задача, которая когда-либо стояла перед физикой.