Гл. 2. Многомерное пространство-время

We use cookies. Read the Privacy and Cookie Policy

Гл. 2. Многомерное пространство-время

«Поэтому стандартная модель приводит к первичной особенности — Большому Взрыву. Этот вывод был назван Джоном Уилером "величайшим кризисом физики". В самом деле, в чем мог бы быть смысл такой особенности? Если проследить за историей Вселенной в обратном направлении, то придем ли мы к точке, за которой прекращается действие законов физики? Действительно ли мы имеем дело с первичной особенностью или же рождение Вселенной следует рассматривать как результат некоторой неустойчивости, связанной с явлениями типа фазового перехода?»

Иван Пригожий. Первичные необратимые процессы

Рис. 45. Геометризация единого поля в границах континуальных представлений теоремы Пуанкаре — Перельмана

«Инфляция и проблема плоскостности… проблема, адресуемая инфляционной космологии, имеет дело с формой про-

-130-

странства… Обращаясь к двумерной визуализации, имеются возможности положительной кривизны (форма, подобная поверхности шара), отрицательной кривизны (седловая форма) и нулевой кривизны (форма, подобная бесконечной плоской поверхности стола или экрану видеоигры конечных размеров). С ранних дней ОТО физики осознавали, что полная материя и энергия в каждом объеме пространства — плотность материи/энергии — определяет кривизну пространства. Если плотность материи/энергии высока, пространство свернется в форму сферы; это значит, что будет положительная кривизна. Если плотность материи/энергии низка, пространство будет расширяться вовне, как седло; это значит, будет отрицательная кривизна. Или… для очень специального количества плотности материи/энергии — критической плотности, равной массе около пяти атомов водорода (около 10-23 граммов) в каждом кубическом метре, — пространство будет лежать точно между этими двумя экстремумами и будет совершенно плоским; это значит, что кривизны не будет».

Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Есть в любой науке проблемы, подобные в чем-то задаче Пуанкаре, которые заставляют поколения ученых искать решения, как когда-то рыцари искали мистическую чашу святого Грааля. Таким Граалем в физике принято считать Теорию Всего, или Теорию Великого Объединения. Эйнштейн посвятил ее разработке половину жизни, да и после множество физиков разного ранга пытались достичь здесь успеха… Увы, пока еще контуры будущего Великого Объединения выглядят весьма расплывчато даже в идеологическом плане. Между тем существует мнение, что пути решения этой грандиозной научной проблемы следует искать именно в области топологии окружающего нас пространства-времени. Из расчетов физиков-теоретиков следует, что если трехмерное пространство заменить четырехмерным, введя новое пространственное измерение, то гравитацию и электромагнетизм можно представить в виде единого поля, которое тоже подчиняется теории Эйнштейна, но только уже в пятимерном пространстве-времени. При этом оказывается, что электромагнетизм — это

-131-

гравитация в дополнительном пространственном измерении. В то же время именно трехмерная сфера в четырехмерном континууме, по теореме Пуанкаре — Перельмана, содержит прообраз устойчивых решений в эволюции нашего Мироздания.

Итак, если немного отвлечься от парадоксальности инфляционных сценариев рождения Мироздания, то окажется, что нам нужна какая-то очень глубокая теоретическая идея, которая бы связывала абстракции теоремы Пуанкаре — Перельмана и эволюцию реальной ткани пространства-времени нашей Вселенной. Вот тут самое время вспомнить о странном результате, который в начале 20-х годов прошлого века получил работавший в Кенигсбергском университете польский физик Теодор Калуца.

Как и на других ученых, на Калуцу огромное впечатление произвел вывод Эйнштейна о том, что тяготение, являясь физической силой, тем не менее, имеет чисто геометрическую природу, являясь искривленностью четырехмерного пространства-времени. Кроме гравитации, в то время были известны только электромагнитные силы, и Калуца предположил, что они тоже имеют какое-то геометрическое происхождение.

Результат удивительный и… непонятный! Один из тех, о которых говорят: либо просто совпадение, математический фокус, либо отблеск чего-то очень далекого, что еще только предстоит открыть и понять. Эйнштейн, которого Калуца просил рекомендовать его статью в физический журнал, два года колебался, прежде чем удовлетворил просьбу.

Тут-то и пригодилась теория единого суперполя, все компоненты которого — родные сестры. Основываясь на идее Калуцы, всех их можно считать гравитацией в многомерном пространстве-времени.

В физике такое бывает часто: развиваются, казалось бы, не имеющие ничего общего направления, испытывают трудности и заходят в тупик. Внезапно кто-то сообразит, что это разные стороны одного и того же, причем каждая имеет как раз то, чего недостает другой. Но почему тогда мы никак не ощущаем дополнительные измерения? Не входим ли мы в противоречие с реальными фактами?

-132-

Среди большого числа научно-фантастических романов и рассказов, написанных знаменитым английским писателем Гербертом Уэллсом, есть один, где речь идет о необычной Вселенной, четырехмерное пространство которой состоит из бесчисленного количества независимых трехмерных миров, подобных нашему. Однако есть область, где они пересекаются, и там можно попасть в любой из них. Уэллсовская Вселенная похожа на раскрытую книгу, где веер независимых страниц-миров имеет общий корешок.

Можно придумать Вселенную из полностью независимых параллельных миров, каждый из которых, подобно гладкой шелковой ленте, повторяет все изгибы соседнего. Многие писатели-фантасты давно уже продуктивно эксплуатируют подобные идеи.

Ничего подобного в нашем мире не наблюдается (хотя время от времени можно встретить газетные утки с мифической ерундой о якобы наблюдавшихся кем-то и где-то случаях мгновенной телепатии или телекинеза!). Самые тщательные, с огромной точностью выполненные опыты с элементарными частицами (а в этом случае можно получить наибольшую точность) не обнаружили никаких, даже самых малых нарушений причинности.

Рис. 46. Пространство вложенных измерений многообразия Пуанкаре — Перельмана

В своей стандартной и, надо сказать, пока еще общепризнанной модели Вселенная имеет три протяженных пространственных измерения и одно временное. Однако сама по себе

-133-

топология нашего Мира довольно неоднородна, она резко искажается вблизи массивных тел и даже закручивается в воронки у горловин гравитационных коллапсаров. При этом основная идея, касающаяся скрытых дополнительных измерений, остается неизменной: если дополнительные, свернутые циклические измерения нашей Вселенной подобны медным пояскам на вселенской трубе и к тому же являются чрезвычайно малыми, их гораздо труднее обнаружить, чем явно наблюдаемые протяженные измерения. На самом деле, если размер этих измерений достаточно мал, их невозможно обнаружить даже с помощью самых мощных инструментов. Что очень важно, циклическое измерение представляет собой не просто какое-то вздутие внутри привычных протяженных измерений. Напротив, циклическое измерение является новым измерением, оно существует в каждой точке пространства обычных измерений, наряду с измерениями вверх-вниз, влево-вправо и вперед-назад, которые также существуют в каждой точке. Это независимое направление, в котором можно было бы развивать топологические преобразования Перельмана, начиная от метрической сетки обычных пространственных измерений и заканчивая компактифицированными циклическими измерениями.

Есть еще одно соображение, которое, казалось бы убедительно говорит о том, что в нашем мире нет ни четвертого, ни более высоких пространственных измерений. Английский астрофизик Артур Эддингтон доказал, что в этом случае вообще не было бы атомного вещества, так как в мирах с числом измерений, большим трех, электрические заряды взаимодействуют слишком сильно. Электроны там не могут удержаться на орбитах, и атомы «взрываются внутрь» или коллапсируют. Может быть, такие своеобразные миры где-то и существуют вне нашей реальности, но в нашей Вселенной атомы устойчивы и потому, сделал вывод Эддингтон, никаких дополнительных пространственных измерений в ней просто нет. И тем не менее это все же не означает, что в нашем мире нет четвертого измерения. Оно может открываться лишь глубоко в микромире, куда мы пока еще не можем заглянуть с помощью наших приборов.

Трудность с лишними пространственными измерениями была главной причиной подозрительного отношения физиков к идее Калуцы. Первую серьезную попытку справиться с ней предпринял шведский теоретик Оскар Клейн. По его

-134-

мнению, четвертое пространственное измерение, постулированное Калуцей, существует реально и не ощущается нами лишь потому, что мир в этом направлении имеет микроскопически малый радиус, то есть представляет собой крошечную замкнутую окружность. Если бы мы могли двигаться в этом направлении, мы бы сразу же вернулись в исходную точку.

Существует много моделей пространственных конструкций с четырьмя и большим числом измерений, в которые наш мир входит лишь как часть. Можно даже придумать миры, где существует сразу несколько направлений времени, и вообразить еще более экзотические структуры. Но все они имеют общее свойство: между событиями в различных пространственно-временных точках нашего трехмерного мира будет существовать связь через недоступные нашему восприятию четвертое, пятое и следующие измерения. В таком многомерном мире можно попасть в прошлое или будущее и вернуться обратно, мгновенно переместиться из одного места в другое. Обладай наш мир такими свойствами, вокруг нас постоянно происходили бы чудеса. Одни предметы исчезали бы без следа, другие неожиданно появлялись бы из ничего. Можно было бы общаться с умершими предками и с еще не родившимися потомками. Хотя мысль о высших пространственных измерениях является неподтвержденной экспериментом гипотезой, в глазах физиков она выглядит весьма убедительной.

Физика во многом сложилась как экспериментальная наука, и лишь прошлый век дал импульс развитию ее теоретической части. Со временем физические эксперименты становятся все более сложными и дорогостоящими, поэтому физикам чаще приходится зондировать природу с помощью формул. Для этого выдвигаются гипотезы, которые обобщают уже известные физические законы, а их следствия анализируются чисто теоретически с помощью сложных математических построений.

Внешне это выглядит чем-то вроде «физико-математической фантастики». Казалось бы, математические грезы физиков-теоретиков напоминают произведения Айзека Азимова и Артура Кларка и далеки от реальности. Однако отнюдь не все сумасшедшие идеи теоретиков обязательно реализуются в существующем мире. Но понять, почему природа предпочла пойти другим путем, тоже очень важно — это может дать ключ к открытию новых фундаментальных законов.

-135-

Хотя мы часто говорим о смелости научной мысли и беспредельном полете фантазии, наши идеи, даже самые фантастические, по существу, не слишком уж далеко выходят за пределы привычного нам мира. Это проявляется и в теоретической физике, несмотря на всю необычность ее современных представлений. Например, многомерные миры в каких-то отношениях мыслятся как нечто весьма похожее на нашу четырехмерную Вселенную, только с большим числом координат.

В своей недавней статье американский физик Стивен Вайнберг иронически заметил, что такие представления сродни уверенности в том, что при любом контакте с космическим разумом мы встретим если не зеленых человечков, то что-нибудь похожее на жука, осьминога или какое-либо другое земное существо.

Между тем в глубине иных измерений у живых существ вообще должны быть некие принципиальные отличия, например тринокулярное зрение. Так, расчеты американских физиков показали, что если высокоразвитые существа живут в очень сильно искривленном пространстве, то им было бы удобно рассматривать окружающий их мир не двумя, а тремя глазами.

Рис. 47. Свернутое пространство гомотопии Перельмана

«Итак, мы пришли к довольно удивительным выводам. Хотя мы наблюдаем только три протяженных пространственных измерения, рассуждения Калуцы и Клейна показыва-

-136-

ют, что это не исключает существования дополнительных, свернутых измерений, по крайней мере, если они достаточно малы. Вселенная вполне может иметь больше измерений, чем доступно нашему глазу. Насколько малы должны быть эти измерения? Современная техника может обнаружить объекты, размер которых составляет одну миллиардную от одной миллиардной доли метра. Если дополнительное измерение свернуто до размера, который меньше этого значения, обнаружить его невозможно. В 1926 году Клейн объединил первоначальное предположение Калуцы с некоторыми идеями бурно развивавшейся квантовой механики. Его расчеты показали, что дополнительное циклическое измерение по размерам сопоставимо с планковской длиной, что выходит далеко за рамки современных возможностей экспериментального изучения. С этого времени физики стали называть гипотезу о существовании дополнительных крошечных пространственных измерений теорией Калуцы — Клейна».

Брайан Грин. Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории

Сильнее всего пространство-время искривлено внутри черных дыр, вблизи сингулярности. Это искривление воздействует не только на материальные тела, но даже на свет: вокруг черной дыры существует некая зона, попав внутрь которой, ничто, даже световой луч, не может вылететь наружу. Поверхность, ограничивающая эту зону, называется горизонтом событий. Предположим, что некие фантастические существа рассматривают окружающий их мир с помощью обыкновенного зрения, то есть улавливая световые лучи. Смогут ли они эффективно использовать бинокулярное зрение в таком сильно искривленном пространстве-времени?

По теории Калуцы — Клейна, наш Мир по трем направлениям является расширяющейся Вселенной, а по четвертому — окружностью с невообразимо малым радиусом, связанным с массами элементарных частиц. Чтобы они получались такими, как на опыте, радиус должен быть десятичной дробью с тридцатью тремя нулями, то есть быть меньше протона в сто миллиард миллиардов раз.

-137-

С одной стороны, для объединения известных четырех взаимодействий нужно не менее шести новых направлений в пространстве. С другой стороны, исследования, основанные на теории симметрии Галуа, показали, что наблюдаются только две возможности: 10- и 11-мерное пространство-время. Тем не менее до однозначности здесь еще далеко. Структура многомерных пространств чрезвычайно сложна, и дополнительные шесть или семь степеней свободы можно «свернуть» в сверхмалом объеме множеством способов. И каждый способ — новая теория со своими геометрическими и физическими особенностями.

Оказывается, нет. Расчеты показывают, что из-за сильного искривления пространства-времени на световые лучи будут тоже действовать приливные силы. Они будут искажать фронт световых волн так, что он из локально-сферического станет локально-эллиптическим. Это значит, что, увидев такой свет, существо с двумя глазами сможет приблизительно определить расстояние до источника света, но, если оно наклонит голову, эта оценка изменится (то есть существо, крутя головой, будет видеть, что источник света то приближается, то удаляется).

Этот недостаток зрения можно будет устранить, если существо обладает не бинокулярным, а тринокулярным зрением: имеет три глаза, расположенные не на одной прямой. Научившись с детства обрабатывать зрительную информацию от трех глаз, такое существо сможет одним взглядом замерить сразу все кажущиеся дистанции и оценить точное расстояние до источника света. Можно даже сказать, что тринокулярное зрение должно быть столь же эволюционно выгодным для жизни внутри черной дыры, как и бинокулярное зрение — в плоском пространстве-времени.

Если черная дыра обладает огромной массой, то и ее горизонт событий имеет огромный радиус. Поэтому тело, попавшее под горизонт событий, может падать на сингулярность еще очень и очень долго. Так долго, что за это время эти гипотетические существа успеют появиться на свет, размножиться и даже эволюционировать.

-138-

Кто знает, возможно, вся видимая нами часть Вселенной, все эти галактики, звезды, планеты, да и мы с вами, находится под горизонтом невообразимо огромной черной дыры и медленно-медленно падает на ее центр, просто это падение растянулось на многие миллиарды лет. Может быть, и нам при астрономических наблюдениях стоит принять к сведению преимущества тринокулярного зрения?

Рис. 48. Мир суперновой физики пространства-времени в теореме Пуанкаре — Перельмана

Современная физика изучает объекты, которые без формул просто невозможно представить. Это и многомерные миры с несколькими временами, текущими в различных направлениях, и соседствующие в пространстве области с различными видами вакуума, и спонтанно образующиеся как

-139-

пузыри вселенные с новыми измерениями из безразмерных точек. Именно поэтому математические структуры, подобные найденным Г. Я. Перельманом, так нужны в описании космологических сценариев инфляционного Большого Взрыва или компактифицированных измерений той же струнной теории.

Высшие размерности могут быть устроены совсем не так, как наш мир. Откуда известно, что там непременно должны быть метрические свойства, подобные нашим длине и углу? Почему не быть дробной размерности или мирам, в которых число координат изменяется с течением одного или нескольких времен? В многомерном мире могут реализоваться значительно более сложные геометрии, чем наша, а следовательно, и совершенно другая физика. Чтобы понять это, как раз и нужны теоретические построения в духе своеобразной физико-математической фантастики.

-140-