Гл. 1 Великий метафизик

We use cookies. Read the Privacy and Cookie Policy

Гл. 1 Великий метафизик

«Самый важный факт состоит в том, что все рисуемые наукой картины природы, которые только могут находиться в согласии с данными наблюдений, — картины математические… Природа, по-видимому, очень "хорошо осведомлена" о правилах чистой математики… Во всяком случае, вряд ли можно усомниться в том, что природа и наши сознательные математические умы действуют по одним и тем же законам».

Джеймс Джине. Загадочная Вселенная

Рис. 7. Пуанкаре в молодости

«Опыт играет необходимую роль в происхождении геометрии; но было бы ошибкой заключить, что геометрия — хотя бы отчасти — является экспериментальной наукой.

Если бы она была экспериментальной наукой, она имела бы только временное, приближенное — и весьма грубо приближенное — значение. Она была бы только наукой о движении твердых тел. Но на самом деле она не занимается

-21-

реальными твердыми телами; она имеет своим предметом некие идеальные тела, абсолютно неизменные, которые являются только упрощенным и очень отдаленным отображением реальных тел.

Понятие об этих идеальных телах целиком извлечено нами из недр нашего духа, и опыт представляет только повод, побуждающий нас его использовать…»

А. Пуанкаре. Наука и метод

Один из величайших математиков-универсалов, человек, про которого ходили легенды о том, что он способен охватить мысленным взглядом все новейшие результаты на всем безбрежном поле научных знаний, родился 29 апреля 1854 года во французской провинции Лотарингия, в местечке Сите-Дюкаль. Его отец, Леон Пуанкаре (4828–1892), занимал почетную должность профессора медицины в Университете Нанси. Мать Анри, Эжени Лануа, была довольно образованной для своего времени женщиной, писала стихи, знала музыкальную грамоту и несколько европейских языков. Все свободное время она посвящала воспитанию детей — сына Анри и дочери Алины. Дружная семья Пуанкаре гордилась своими родственниками-кузенами: видным политиком Раймондом Пуанкаре, президентом Франции в 1913–1920 годах, и Люсьеном Пуанкаре, ректором Парижского университета.

Как и многие другие одаренные личности, Анри рос необычным ребенком, очень рассеянным и несколько небрежным, с трудом переключал внимание с одного учебного предмета на другой; были у него и определенные трудности с графическим закреплением своих знаний. В раннем детстве Анри тяжело переболел дифтерией, которая при уровне медицины того времени была смертельно опасной болезнью. Несколько месяцев Анри находился между жизнью и смертью, без сознания, с параличом конечностей. Даже после того как болезнь отступила, он еще долго не мог ходить и говорить, причем у него неожиданно феноменально развилось очень редкое слуховое образное мышление, когда Анри воспринимал окружающие звуки в цветовой гамме. Все эти удивитель-

-22-

ные черты характера и мышления сохранились у Пуанкаре до самого конца жизни. Многие биографы ученого считают, что именно в отрочестве у него сформировалось необычное восприятие окружающей действительности, проявившееся в будущем как своеобразная творческая манера Пуанкаре-философа и исследователя.

Неплохая домашняя подготовка и занятия с репетиторами позволили Анри уже в восьмилетнем возрасте выдержать приемные экзамены за второй курс местного лицея. В памяти преподавателей он остался как прилежный, любознательный, но несколько рассеянный лицеист. Никто в то время не отмечал его интереса к математическим и естественнонаучным дисциплинам, и при распределении по специальностям юный лицеист записался на отделение словесности. После выпускных экзаменов в августе 1871 года Пуанкаре получил степень бакалавра словесности с оценкой «хорошо». Следующей ученой степенью для выпускников лицея был бакалавр наук, и через некоторое время Анри рискнул держать на него экзамен, который ему удалось сдать лишь с оценкой «удовлетворительно», в том числе потому, что он «срезался» на письменной работе по математике по причине банальной рассеянности.

В последующие годы юный Пуанкаре начинает все больше внимания уделять математическим дисциплинам и после двух лет упорной подготовки блестяще сдает вступительные экзамены в Парижскую высшую нормальную школу. После окончания второго курса лучшие студенты могли претендовать на конкурсный переход в Парижскую горную школу, считавшуюся в то время наиболее авторитетным специальным высшим учебным заведением. Второкурсник Пуанкаре уверенно проходит конкурсный отбор и уже через несколько лет защищает докторскую диссертацию. Председатель аттестационной комиссии, видный математик, академик Гастон Дарбу, с восхищением писал в отзыве на диссертационную работу: «С первого же взгляда мне стало ясно, что работа выходит за рамки обычного и с избытком заслуживает того, чтобы ее приняли. Она содержала вполне достаточно результатов, чтобы обеспечить материалом много хороших диссертаций».

-23-

После присвоения докторской степени Пуанкаре направился на свое первое место академической работы в должности адъюнкт-профессора. Педагогическую и научную деятельность молодой ученый начал в Высшей технической школе небольшого нормандского городка Кане. Здесь он и создал первые научные работы, сразу же привлекшие внимание научной общественности Франции. Эти достаточно оригинальные математические исследования были посвящены введенному Пуанкаре понятию автоморфных функций. Вскоре статьи Пуанкаре начали обсуждаться и европейскими математиками.

Рис. 8. Пуанкаре — профессор университета

В октябре 1881 года Пуанкаре получил лестное предложение занять должность ординарного профессора в Парижском университете. Параллельно он отстоял право вести обширную преподавательскую работу и в других столичных высших учебных заведениях. В частности, Пуанкаре долгое время успешно преподавал авторский курс математического анализа в Высшей политехнической школе.

Осенью 1886 года Анри Пуанкаре возглавил кафедру математической физики и теории вероятностей Парижского университета, а в январе 1887-го был избран членом французской Академии наук. В Париже он написал свои фундаментальные

-24-

работы по дифференциальным уравнениям, небесной механике, топологии, а также доказал, что знаменитая «задача трех тел» не имеет законченного математического решения. Вершиной научно-педагогической деятельности ученого стал десятитомный фундаментальный «Курс математической физики», вышедший в 1889 году и сразу же ставший основным пособием для студентов-математиков, получив восторженные отзывы. Творческие успехи Пуанкаре были достойно оценены у него на родине, и в 1906 году он был избран президентом французской Академии наук.

Пуанкаре скончался 17 июля 1912 года в Париже после неудачной операции и был похоронен в семейном склепе на столичном кладбище Монпарнас.

Вероятно, Пуанкаре предчувствовал свою неожиданную смерть, так как в последней статье описал нерешенную им задачу («последнюю теорему Пуанкаре»), чего никогда раньше не делал. Спустя несколько месяцев эта теорема была доказана Джорджем Биркгофом. Позже при содействии Биркгофа во Франции был создан Институт теоретической физики имени Пуанкаре.

Рис. 9. Ученый в кругу семьи

Все современники отзывались о выдающемся французском ученом как о человеке чести, благородном и корректном в любых, даже самых горячих научных полемиках. Пуанкаре никогда

-25-

не участвовал в спорных с моральной точки зрения дискуссиях, которые могли даже косвенно оскорбить других ученых. Он неоднократно добровольно уступал научный приоритет, даже если имел серьезные права на него. Например, он первым выписал в современном виде преобразования Лоренца (наряду с Лармором), однако сам же и назвал их именем Лоренца, который ранее дал их неполное приближение.

Во времена Пуанкаре набирала силу третья волна позитивизма, в рамках которой, в частности, математика провозглашалась частью логики. Этой идеи, к слову, придерживался знаменитый философ и математик Бертран Рассел. Другая группа неопозитивистов во главе с выдающимся математиком Гильбертом вообще считала, что математическая наука представляет собой всего лишь малосодержательный набор аксиоматических теорий. Пуанкаре был категорически против такого рода формалистических взглядов. Он считал, что в основе деятельности математики лежит интуиция, а сама наука не допускает полного аналитического обоснования.

Рис. 10. Память о выдающемся ученом

«Опыт направляет нас при этом выборе среди всех возможных групп перемещений к той, которая служила бы эталоном

-26-

для соотнесения с ней реальных явлений, но не делает его для нас обязательным; он показывает нам не то, какая геометрия наиболее правильна, а то, какая наиболее удобна…

Поскольку невозможно указать конкретный опыт, который мог бы быть истолкован в евклидовой системе и не мог бы быть истолкован в системе Лобачевского, то я могу заключить: никогда никакой опыт не окажется в противоречии с постулатом Лобачевского».

Анри Пуанкаре. Наука и гипотеза

Творческие методы Пуанкаре отличались оригинальностью и эффективностью. Так, он всегда сначала полностью решал задачи в голове, а затем записывал решения. В этом ученому помогали феноменальная память, научная интуиция и воображение. Известно, что Пуанкаре мог слово в слово цитировать все прочитанное и услышанное им на протяжении жизни. Кроме того, он избегал долговременных размышлений над одной и той же темой, считая, что подсознание уже получило условие задачи и будет успешно над ней трудиться до окончательного решения.

Развивая конвенционализм, Пуанкаре доказывал, что основные положения, принципы и законы любой научной теории не являются ни искусственными синтетическими истинами, изначально содержащимися в ней, как считал в свое время Кант, ни законченными моделями объективной реальности механических материалистов. По его мнению, содержание науки представляет собой некие соглашения, которые негласно поддерживаются работающими в данной области исследователями и единственным абсолютным условием для которых является их внутренняя непротиворечивость. При этом Пуанкаре считал, что выбор тех или иных положений из множества возможных произволен, если отвлечься от практики их применения. Поскольку мы руководствуемся последней практикой применения, произвольность выбора основных принципов ограничена, с одной стороны, потребностью нашей мысли в максимальной простоте теорий, с другой — необходимостью успешного их использования.

-27-

В границах этих требований заключена известная свобода выбора, обусловленная относительным характером самих этих требований. Эта философская доктрина и получила впоследствии название конвенционализма.

Комментируя философскую позицию великого французского ученого, профессор Клайн отмечает, что Пуанкаре был абсолютно уверен в существовании бесконечного множества теорий, которые в состоянии адекватно объяснить и описать любую область опыта. Выбор теории произволен, хотя обычно более простой теории отдают предпочтение. Несмотря на то что ученые в основном генерируют и используют идеи, адекватные окружающей физической реальности, другие теории, если приложить к ним достаточно усилий, также могут оказаться вполне действенными. Хотя Пуанкаре более точно объяснял, каким образом математика достигает согласия с реальностью, он в известной мере соглашался и с объяснением Канта, а именно: считал, что соответствие между математикой и природой обусловлено человеческим разумом.

Конвенционализм… Этому несколько необычному философскому течению, созданному гением Пуанкаре, предстоит еще сыграть роль связующего звена в нашем повествовании. Очень многие поступки философов напрямую связаны с проповедуемыми ими учениями, особенно если они являются и авторами данной доктрины. Вспомним хотя бы Диогена с его бочкой…

Что же касается декларируемого Пуанкаре подхода, хотя топологические и тем более геометрические представления могут вполне успешно применяться для решения самых различных прикладных физико-технических задач, «искусственный характер» такого применения, основанный на аналогичности нетождественных объектов, вовсе не доказывает произвольного характера самих теоретических построений.

Вообще, у метафизической доктрины французского мыслителя до сих пор есть группа ученых-поклонников. Кроме того, некоторые элементы конвенционализма вошли в известные философские течения прошлого века, например позитивизм, прагматизм, операционализм и инструментализм.

-28-

Конечно, при этом не надо забывать, что точка зрения конвенционализма типична для субъективного идеализма, поскольку отрицает объективное содержание в знаниях ученого, умозрительно исследующего окружающий Мир.

Рис. 11. Институт теоретической физики имени Пуанкаре

«Но та гармония, которую человеческий разум полагает открыть в природе, существует ли она вне человеческого разума? Без сомнения — нет; невозможна реальность, которая была бы полностью независима от ума, постигающего ее. Такой внешний мир, если бы даже он и существовал, никогда не был бы нам доступен. Но то, что обще нескольким мыслящим существам, могло бы быть общо всем. Этой общей стороной, как мы увидим, может быть только гармония, выражаемая математическими законами».

Анри Пуанкаре. Ценность науки

-29-