Глава пятая Год чудес: кванты и молекулы. 1905
Глава пятая
Год чудес: кванты и молекулы. 1905
Начало нового века
Рассказывают, что лорд Кельвин, выступая в 1900 году перед Британской ассоциацией содействия развитию науки, сказал: “В физике уже не осталось ничего нового, и открывать больше нечего. Остается только проводить все более точные измерения”1. Он оказался неправ.
Ньютон (1642–1727) заложил основы классической физики в конце XVII века. Основываясь на открытиях Галилео Галилея и других ученых, он вывел законы, описывающие очень понятную механистическую Вселенную: падающее с дерева яблоко и вращающаяся по орбите Луна подчиняются одним и тем же правилам, связывающим гравитацию, массу, силу и параметры движения. Причина вызывает следствие, силы действуют на объекты, а теория все может объяснить, определить и предсказать.
Математик и астроном Лаплас, восхищенный ньютоновскими законами, описывающими Вселенную, сказал: “Разум, которому в каждый определенный момент времени известны все силы, приводящие природу в движение, и положение всех тел во Вселенной, смог бы объять единым законом движение величайших тел Вселенной и мельчайших атомов; для такого разума ничего не было бы неясного, и будущее было бы открыто ему точно так же, как прошлое”2.
Эйнштейн восхищался такой прямолинейной интерпретацией причинно-следственной связи и называл ее “глубочайшей чертой ньютоновского учения”3. С легким сарказмом он кратко изложил историю физики так: “В начале (если такое понятие существует) Бог создал ньютоновские законы движения, а одновременно с ними – требуемые для них массы и силы”. Что особенно восхищало Эйнштейна, так это “успешность применения механики в тех областях, которые ничего общего с механикой не имеют”, таких как кинетическая теория, которой он занимался и согласно которой поведение газов определялось взаимодействием миллиардов сталкивающих друг с другом молекул4.
В середине 1800 годов ньютоновская механика дополнилась еще одним великим открытием. Майкл Фарадей (1791–1867), сын кузнеца и самоучка, открыл электрические и магнитные поля и описал их свойства. Он показал, что электрический ток создает магнитное поле, а меняющееся магнитное поле может создать электрический ток: когда магнит движется относительно петли из проволоки или, наоборот, петля относительно магнита, в ней возникает электрический ток5.
Работы Фарадея по электромагнитной индукции позволили разным предприимчивым и изобретательным бизнесменам вроде отца Эйнштейна и его дяди конструировать разные новые типы электрических генераторов из катушек с намотанной на них проволокой и движущихся магнитов. Таким образом, юный Эйнштейн о фарадеевых полях имел не только теоретическое представление.
В свою очередь физик Джеймс Клерк Максвелл (1831–1879), импозантный шотландец с кустистой бородой, вывел замечательные уравнения, которые, в частности, описывали то, как изменяющиеся электрические поля приводят к появлению магнитных полей, а меняющиеся магнитные поля приводят к появлению электрических полей. Переменное электрическое поле действительно может создать переменное магнитное поле, а оно в свою очередь может создать меняющееся электрическое поле и так далее, и в результате этого взаимопревращения возникает электромагнитная волна.
Эйнштейн свое предназначение видел в том числе и в развитии идей великого шотландца (знаковое совпадение: Ньютон родился в тот год, когда умер Галилей, а Эйнштейн родился в год смерти Максвелла). Это был теоретик, сбросивший господствующие предубеждения, который позволил мелодиям математики увести его в неизведанные дали, нашел гармонию, основанную на красоте и простоте теории поля.
Всю свою жизнь Эйнштейн восхищался теориями поля. Например, в учебнике[16], написанном им вместе с коллегой, он так описал развитие концепции поля:
“В физике появилось новое понятие, самое важное достижение со времен Ньютона, – поле. Потребовалось большое научное воображение, чтобы уяснить себе, что не заряды и частицы, а поле в пространстве между зарядами и частицами существенно для описания физических явлений. Понятие поля оказалось весьма удачным и приводит к формулированию уравнений Максвелла, описывающих структуру электромагнитного поля”6.
Сначала казалось, что теория электромагнитного поля совместима с механикой Ньютона. Например, Максвелл верил, что электромагнитные волны, включая свет, можно объяснить в рамках классической механики, если предположить, что Вселенная заполнена неким невидимым и очень легким “светоносным эфиром” – физической субстанцией, которая совершает колебательные движения при распространении электромагнитных волн. Роль эфира можно сравнить с ролью, которую играет вода при распространении волн по морской глади или воздух при распространении звуковых волн.
Однако к концу XIX века в фундаменте классической физики наметились трещины. Во-первых, ученые, как ни старались, не смогли найти свидетельств нашего движения через предполагаемый светоносный эфир. А изучение испускания света и других электромагнитных волн физическими телами поставило еще одну проблему. На стыке ньютоновской физики, описывающей механическое движение дискретных частиц, и теории поля, описывающей электромагнитные явления, происходили странные вещи.
Но до того, как погрузиться в эти проблемы, Эйнштейн опубликовал пять статей, не получивших большой известности. Они не помогли ему ни получить степень доктора, ни даже найти место учителя средней школы. Если бы он тогда отказался от занятий теоретической физикой, научное сообщество и не заметило бы потери. А Эйнштейн мог бы, продвигаясь по служебной лестнице, сделать карьеру в Швейцарском патентном бюро и стать его главой и на этом месте, видимо, преуспел бы.
Ничто не предвещало того, что он вот-вот станет героем нового annus mirabilis[17], подобного которому наука не знала с 1666 года. Тогда Исаак Ньютон, скрываясь от чумы, свирепствовавшей в Кембридже, в доме своей матери в деревне Вулсторп, смог за год разработать дифференциальное исчисление, проанализировать спектр белого света и открыть закон тяготения.
И вот теперь физика опять готова была совершить кульбит, и именно Эйнштейну суждено было стать человеком, который поможет ей это сделать. Во-первых, у него было нахальство, необходимое для того, чтобы отбросить все наслоения общепринятых теорий, мешающие разглядеть трещины в фундаменте физики. А еще у него было живое воображение, позволившее ему сделать концептуальный скачок, на который не отважились ученые, мыслящие более традиционно.
О прорывах, которые ему удалось совершить в течение сумасшедшей четырехмесячной работы с марта по июнь 1905 года, он оповестил Конрада Габихта в письме, ставшем одним из самых известных личных писем в истории науки. Габихт – его приятель по философскому кружку, названному его участниками “Академией Олимпия”, – незадолго до этого уехал из Берна, что, к счастью для историков, дало повод Эйнштейну в конце мая написать ему письмо:
“Милый Габихт!
Между нами длилось священное молчание, и то, что я его прерываю малозначительной болтовней, покажется кощунством…
Ну а вообще что делаете, вы, замороженный кит, высохший и законсервированный обломок души? Почему вы не присылаете мне свою диссертацию? Разве вы, жалкая личность, не знаете, что я буду одним из полутора парней, которые прочтут ее с удовольствием и интересом? За это я вам обещаю прислать четыре свои работы. Первая посвящена излучению и энергии света и очень революционна, как вы сами убедитесь, если сначала пришлете мне свою работу. Вторая работа содержит определение истинной величины атомов. Третья доказывает, что согласно молекулярной теории тепла тела величиной порядка 1/1000 мм, взвешенные в жидкости, испытывают видимое беспорядочное движение, обязанное тепловому движению молекул. Такое движение взвешенных тел уже наблюдали физиологи – они назвали его броуновским молекулярным движением. Четвертая работа пока еще находится в стадии черновика, она представляет собой электродинамику движущихся тел и меняет представление о пространстве и времени”7.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Лживые кванты
Лживые кванты Мальчик идет по дороге к селу, горы изнывают в безветрии, и небеса темнеют, как засыхающая капля чернил. Что-то его влечет к дому с колодцем и крупными розами, устало поникшими в ту сторону, где берег речки. У ворот приютилась женщина в выцветшем платке, с
Глава пятая, в которой Альберт Эйнштейн устраивает «год чудес»
Глава пятая, в которой Альберт Эйнштейн устраивает «год чудес» Гениальные мысли приходят в голову так редко, что их нетрудно запомнить. Эйнштейн о том, как он смог запомнить все свои великие открытия Так уж получилось, что все свои самые выдающиеся открытия Эйнштейн
16. Молекулы и кратковременная память
16. Молекулы и кратковременная память В 1975 году, через двадцать лет после того, как Гарри Грундфест сказал мне, что мозг нужно исследовать по одной клетке, вместе с коллегами я приступил к изучению клеточных основ памяти, то есть механизмов, позволяющих нам на всю жизнь
16. Молекулы и кратковременная память
16. Молекулы и кратковременная память О механизмах работы циклического АМФ в целом см.: R. J. DeLange, R. G. Kemp, W. D. Riley, R. A. Cooper & E. G. Krebs. Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3’, 5’ — monophosphate. J. Biol. Chem. 243, no. 9 (1968): 2200–2208; E. G. Krebs, Protein phosphorylation and cellular regulation, I in: Les Prix Nobel
Глава 3 Опасность чудес
Глава 3 Опасность чудес Когда Иисус призывал к себе апостолов, их более всего поражало то, как Он безошибочно выбирал Себе учеников и знал все об их жизни. Оттого Нафанаил, по словам Иоанна, и воскликнул: «Ты – Сын Божий, Ты – Царь Израилев» (Ин. 1: 49). Иисус ответил: «…ты
Кванты света, март 1905 года
Кванты света, март 1905 года Как Эйнштейн и упоминал в письме Габихту, из статей, написанных в 1905 году, именно первая, а не самая известная – последняя, содержащая объяснение теории относительности, – заслужила определение революционной. Она и на самом деле стала, возможно,
Глава V КВАНТЫ СУЩЕСТВУЮТ? ЭТО ЕЩЕ ВОПРОС
Глава V КВАНТЫ СУЩЕСТВУЮТ? ЭТО ЕЩЕ ВОПРОС Их свадьба состоялась год спустя, в 1920 году.Сергею Ивановичу было в то время 29 лет, Ольге Михайловне — 26. Дружба редкой силы и красоты, глубокое взаимное понимание отличали всю их совместную тридцатилетнюю жизнь. Никогда никто не
Глава VI «КВАНТЫ МОЖНО УВИДЕТЬ»
Глава VI «КВАНТЫ МОЖНО УВИДЕТЬ» Оптимизм и упорная вера в будущее, однако, не оставили Вавиловых. Когда расстроенная мать прикидывала, чем заменить ребенку манную крупу, отец осторожно утешал ее и убеждал посоветоваться с Александрой Михайловной.— Не может быть, —
Глава пятая ТЯГОТЫ РЕВОЛЮЦИИ 1905 ГОДА И ЕЕ ПОСЛЕДСТВИЯ
Глава пятая ТЯГОТЫ РЕВОЛЮЦИИ 1905 ГОДА И ЕЕ ПОСЛЕДСТВИЯ Революция 1905 года принесла богатую пищу «Русскому слову» и много тревог его новому владельцу – «Товариществу И.Д. Сытина». Остановки в работе предприятий и транспорта вели к перебоям в снабжении сытинских типографий
Глава пятая 1902–1905: БАЛОВЕНЬ СУДЬБЫ
Глава пятая 1902–1905: БАЛОВЕНЬ СУДЬБЫ Любовь и слава. Шурочка Велигорская. Свадьба и путешествие. «Стена» и «Бездна». Газетная ругань. Два «мешка». Андреев — тень Горького. «Жизнь Василия Фивейского». Старший сын. Поэт-эмигрант Вадим Андреев. Русско-японская война: «Красный
Глава 34 Клуб Чудес
Глава 34 Клуб Чудес Учитель Серапис в своем первом письме полковнику Олькотту в марте 1875 г. писал: «Не бросайте Клуб. Пытайтесь». В то время, по словам Е.П.Б., книга полковника «произвела огромный фурор». Тем не менее в мае она писала Александру Аксакову: «Беда пришла нам…
Глава третья ТРИ МЕСЯЦА ЧУДЕС
Глава третья ТРИ МЕСЯЦА ЧУДЕС Снятие осады Орлеана вызвало радость не только в самом городе, но и во всем королевстве. Дни, прежде уныло тянувшиеся чередой неудач, понеслись со скоростью молнии. Жанна д’Арк во время осады Орлеана. Художник Ж.-Э. Ленепвё Жанна д’Арк во
Молекулы, пушки, торпеды
Молекулы, пушки, торпеды Летняя практика 1925 года закончилась традиционными общеучилищными гонками на Малом и Восточном Кронштадтских рейдах.Состязались мы на катерах, вельботах и шестивесельных ялах. К чести бывших «подготовиловцев», добрая половина призов осталась за
Метафизика молекулы
Метафизика молекулы У меня довольно широкий круг читателей, но не все они понимают, насколько мои мысли о вечности и о Боге (а значит, и о значении священного в культуре) связаны со стихами Зинаиды Миркиной. Эти стихи не только открывали во мне глубину, из которой растет