2.7 Масштабные модели
2.7 Масштабные модели
В известной повести русского писателя Николая Лескова рассказывается о знаменитом тульском механике Левше, который «побил» своего заморского коллегу в международном соревновании еще в XVII веке. Он подковал механическую блоху, изготовленную за границей. Как пел незабвенный Марк Бернес, «быть может, эта песня про меня?». А этот рассказ не только о масштабных моделях, он — о важнейшей части новых андрогинных агрегатов, об АПАСах, о стыковочных механизмах с кольцами, которые заменили старые привычные штырь и конус, о важнейшем этапе работы над необычным механизмом и не только по названию, но и по своей роли в ней.
АПАСам была уготовлена непростая и длинная жизнь. Первые андрогины — АПАС-75 для «Союза» и «Аполлона» — рождались трудно, пережили непростое детство, мужали в тяжелых испытаниях и, наконец, одержали блестящую победу в космосе. Потом их незаслуженно стали забывать. Однако первая андрогинная стыковка на орбите оплодотворила новые идеи и в конце концов принесла настоящие зрелые плоды. Обновленный стыковочный агрегат назвали АПАС-89. Его утробный период затянулся, а рос он почти беззащитным и тоже очень медленно, но когда новый андрогин возмужал, специалисты, наконец, разглядели в нем зрелость и силу.
Кольцо с лепестками у АПАС-75 напоминало корону. Первые эскизы короны родились за океаном, их привезли из Нового Света в Москву осенью 1970 года. Но это была лишь красивая, похожая на скульптуру статическая конфигурация. Сделать кольцо АПАСа подвижным оказалось трудной инженерной задачей для его разработчиков. В АПАСах много непростых, тонких узлов, и все?таки самым сложным является механизм, который мы назвали стыковочным и который дает возможность кольцу двигаться, он делает корону живой.
Первые подвижные, живые кольца в виде масштабных моделей создали и заставили двигаться файн–механики Старого и Нового Света в 1972 году. Так получилось, что для нашего АПАСа это оказалось ключевым этапом. Без малых моделей, без этих почти заводных игрушек было бы невозможно сконструировать хороший стыковочный механизм.
В свою очередь, без нового хитроумного механизма АПАС-75 «Союза» мог не справиться с тем, что приготовила ему его космическая судьба во время стыковки с «Аполлоном» 19 июля 1975 года, а 20 лет спустя не появилось бы его новое андрогинное потомство, которое получило всемирное признание.
Практичные американцы выбрали очевидную концепцию: кольцо с направляющими установили на шести независимых штангах–амортизаторах. Их механизм отличался простыми конструкторскими решениями, в этом было его достоинство. Однако простота не всегда приводит к хорошему результату, к эффективности.
Надо признать, что, применив дифференциальные связи между штангами, на которых установили корону нашего АПАСа, я выбрал сложный, даже опасный путь. Уникальная концепция, замысловатая кинематическая схема, еще не проверенная на практике, с трудом поддавалась анализу. Некоторые вообще сомневались в том, что предложенный механизм работоспособен. Руководители, включая технического директора Бушуева, до сих пор мне доверяли. Но я хорошо понимал, что, прежде чем приступить к окончательной, детальной разработке, необходима экспериментальная проверка. Только эксперимент мог развеять сомнения. Основная критика исходила от проектантов и динамиков из подразделения А. Никифорова, моего давнего оппонента. Как раз в это время я начал объединять разрозненные силы стыковщиков. Часть из них, включая Э. Беликова, перевели в наш отдел, и они начали активно работать на общее дело. В эту группу вошел также А. Коновалов, талантливый конструктор–механик с уникальным опытом, создатель многих узлов для систем разделения ракет и космических аппаратов, умевший работать не только головой, но и руками. Я попросил его проанализировать новый дифференциальный механизм. К моему удивлению и разочарованию, Коновалов сделал мрачный прогноз; кинематика работать не будет. Такой приговор авторитетного конструктора увеличил сомнения, но все же я продолжал верить в правильность основной идеи, а Коновалов через некоторое время вернулся к Никифорову.
В дифференциальную схему поначалу не поверили и некоторые мои соратники. Уникальный конструктор Н. Уткин, о котором я уже много рассказывал, прохладно принял новый механизм. Это было неудивительно: в 80–е годы, когда за новую кинематику взялись настоящие ученые по теории машин и механизмов (ТММ), эта схема даже не вписалась в их классическую классификацию.
Пора рассказать о том, как возникла начальная идея применить дифференциальную схему. Когда мы создавали лунное посадочное устройство для программы ЛЗ, наряду с основным, более очевидным вариантом, проектанты предложили дифференциальную четырехногую механическую систему. С помощью замкнутой тросовой петли связали все четыре ноги. Это повысило эффективность механизма, когда одна нога касалась неровной поверхности (как предполагалось — Луны), другие опоры начинали выдвигаться по очереди до тех пор, пока все они не упирались в грунт; только после этого начиналось торможение, амортизация. Концепция, предложенная группой инженеров во главе с талантливым проектантом А. Саркисьяном, имела целый ряд привлекательных качеств. Одно из них заключалось в том, что лунная кабина почти не наклонялась при прилунении на неровный грунт.
Тогда дифференциальную схему для посадки на Луну зарубили слишком осторожные, консервативные начальники, которые в те годы тоже подчинялись Бушуеву. Однако на этот раз получилось по–другому.
Стыковка чем?то схожа с посадкой на неровную поверхность. Об этом я вспомнил тогда, когда после первой встречи с американцами начал размышлять над пространственным механизмом с кольцом, установленным на шести опорах.
При стыковке кольцо с направляющими активиого АПАСа должно сдвинуться и повернуться так, чтобы совместиться с ответным пассивным кольцом, найти свое нужное положение. Аналогия с посадкой напрашивалась, однако стыковка требовала большего. При посадке на четыре ноги дифференциальная схема обеспечивала три степени подвижности. Для стыковки необходимо увеличить число степеней свободы до шести, с тем чтобы компенсировать боковые смещения и перекосы. Соответственно, это требовало большого количества связей. Появились также дополнительные функции: сцепка, демпфирование, выравнивание и стягивание. Тем не менее дифференциальная идея оказалась плодотворной и для этой более сложной системы.
Дифференциальные связи между всеми шестью штангами, на которых устанавливалось кольцо с направляющими, позволяли кольцу перемещаться и поворачиваться в любом направлении. В принципе, подобным образом соединены ведущие колеса и двигатель обычного автомобиля, для которых дифференциальная связь компенсирует разность пути на виражах. Однако для обычного автомобиля достаточно одного дифференциала. Если нужен второй ведущий мост, появляются еще два подобных узла. В стыковочном механизме с шестью штангами, которые могут двигаться независимо, требуется пять дифференциалов. Благодаря таким связям общая длина штанг остается постоянной: удлинение одних компенсируется укорачиванием других. Например, если одна сторона кольца поднимается, другая опускается, кольцо как бы покачивается относительно центра. При перемещении вбок оно движется почти не наклоняясь. Переместить кольцо по шестой степени свободы, чтобы приблизить его к неподвижному основанию, удается только в том случае, если увеличить силу принудительного движения кольца так, чтобы провернуть фрикционный тормоз, стоящий между штангами и приводом.
Как показывал анализ, дифференциальный стыковочный механизм имеет существенные преимущества перед механизмом с независимыми штангами–амортизаторами. Для лучшего понимания их следует остановиться еще на одной особенности стыковки с помощью АПАС. Корабли обычно подходят друг к другу не соосно, а со смещением или с перекосом. Чтобы сцепиться, этот перекос требуется компенсировать, то есть наклонить кольцо. С одной стороны, при небольших скоростях сближения кинетическая энергия сравнительно мала, поэтому пружины амортизаторов должны быть мягкими. С другой стороны, после сцепки требуется вернуть кольцо в исходное положение, выровнять корабли, поэтому пружины желательно иметь жесткими. На практике необходим компромисс, и это лишь одно из противоречий, которое приходится преодолевать конструктору.
Дифференциальные связи между штангами и фрикционным тормозом привода фактически позволили оптимизировать непростую пространственную кинематику. Наряду с уже сказанным, новая концепция дала дополнительные преимущества. Во–первых, при стягивании кольца отсутствуют силы, препятствующие движению; во–вторых, имеется возможность принудительно выровнять и зафиксировать кольцо в выровненном положении, а затем в этом положении перемещать его приводом; в–третьих, с помощью простых контактных датчиков можно контролировать выровненное положение.
Позднее, в июле 1975 года и 20 лет спустя, в 90–е годы, достоинства дифференциальной кинематики наглядно проявились на практике стыковок в космосе, тогда они стали почти очевидны.
Не помню, чтобы в 1972 году кто?то из руководства открыто выражал сомнения в правильности выбранного решения. Только много лет спустя Черток, заместитель главного конструктора, рассказал мне о том, как Калашников, руководитель нашего комплекса, предупреждал при нем Вильницкого: «Смотри, Лев, подведет тебя Сыромятников, молодой он еще». Черток успокаивал: «Молодость — это недостаток, который быстро проходит, зато придает силы и смелость».
В июле 1972 года, в Хьюстоне академик Петров, добрый, на вид мягкий человек, в плавательном бассейне (наверно, чтобы не подслушали американцы) с каменным лицом сказал нам с Бобровым: «Вы за ваш АПАС отвечаете головой, ваша судьба в ваших руках». Мы это понимали.
Оглядываясь назад, должен отметить: нет, я не боялся, хотя понимал опасность. Проект уже вовсю катился вперед, другой концепции мы не разрабатывали, запасного варианта не существовало. Положение, действительно, сложилось очень серьезное: если бы идея оказалась порочной, вся концепция могла рухнуть. Моя профессиональная карьера на этом, возможно, закончилась бы, ведь речь шла о первом международном проекте космического масштаба. Престиж страны, всей советской космической техники был поставлен на карту. Нет, мне бы наверняка несдобровать.
Эти политические соображения не прибавляли оптимизма, необходимо было срочно проверить идею.
Сначала я попытался организовать практическую проверку новой кинематики параллельно с основной деятельностью по ходу проекта. Для этого нужно было создать действующую модель. Сделать это было трудно, так как требовались большие материальные затраты, связанные с ее изготовлением. Следовало найти повод, чтобы включить моделирование в основное русло международной деятельности. Идеальным выходом мог бы быть дополнительный модельный этап совместных работ, если бы американцы согласились в нем участвовать. К счастью, удалось подыскать хороший повод: весь метод, с помощью которого решили обеспечивать совместимость, также был новым, беспрецедентным. Его тоже следовало бы предварительно проверить практически, сначала на моделях.
Такова предыстория всей дальнейшей модельной деятельности.
В сентябре мне удалось уговорить нашего технического директора Бушуева, а уже в октябре, на встрече в Москве, я убедил своего коллегу Д. Уэйда в необходимости промежуточного экспериментального шага. Моей радости не было предела, когда после некоторых дебатов и консультаций Г. Ланни согласился с предложением, хотя и без энтузиазма. Как раз на этой встрече принимали план совместной разработки и испытаний стыковочного устройства. В нем предусмотрели дополнительный этап: обе стороны должны построить масштабные модели своих АПАСов и провести совместные испытания.
После окончания встречи мы, засучив рукава, приступили к детальному конструированию. К весне 1972 года рабочие чертежи были подготовлены, а состоявшаяся в апреле встреча в Хьюстоне, на которой согласовали интерфейсы, открыла дорогу для изготовления моделей. Совместные испытания наметили на конец года.
Модели назывались масштабными, то есть выполненными в меньшем масштабе, чем настоящие АПАСы. Масштабный коэффициент по предложению американцев выбрали несколько необычным, нецелым: 1:2,5. Они интерпретировали его как 2:5, но их единицам измерения удивляться не приходилось. Тем не менее интуиция и здравый смысл наших коллег не подвели, масштаб они угадали правильно. В этом мы убедились, когда модели были уже готовы: они получились не слишком громоздкими, но достаточно большими, чтобы без особых трудностей воспроизвести основные, существенные детали. Это оказалось особенно важно для нашей модели, в которой воспроизводились все действующие элементы механизма, включая дифференциальные связи. Так что нашим сборщикам из цеха точной механики не пришлось «подковывать блоху».
Работа проводилась независимо, параллельно в обеих странах. Приехав в Хьюстон в июле 1972 года, мы не ожидали увидеть уже готовые модели. В это время наши механизмы находились в процессе изготовления. Сроки совместных испытаний были еще далеки, но, возвратившись в Москву и заручившись поддержкой Бушуева, стыковщики вместе с заводчанами срочно приняли меры для ускорения работ. Это был очень полезный урок. На всех последующих этапах мы уже не отставали от своих партнеров ни в подготовке документации, ни в изготовлении оборудования.
Нужно еще раз подчеркнуть, что в изготовлении наши модели оказались более трудоемкими, чем американские. Модели воспроизводили будущие полномасштабные конструкции, поэтому они были полностью действующими. Ведь нам требовалось не только проверить общую конфигурацию и взаимодействующие элементы, но и воссоздавать работу дифференциального механизма, поскольку именно он вызывал сомнения. Для меня эта задача была тогда главной.
Производство моделей завершилось уже к концу августа. Для динамических испытаний построили специальный стенд. Первый прототип этого стенда с горизонтальной тележкой и качающимся грузом спроектировали еще в середине 60–х годов. Его построили сначала в Казани, а затем в Азове для проверок стыковочных механизмов штырь—конус. На стенде хорошо имитировались основные фазы стыковки, это позволяло проверить работоспособность нового стыковочного механизма. После довольно продолжительных хлопот удалась добиться специального помещения: нам выделили небольшое здание, где раньше располагалась ацетиленовая станция, рядом с приборным корпусом. С «ацетиленкой» связан важный этап развития стыковочной техники; здесь позднее испытывались полномасштабные АПАСы, включая тот, который состыковал корабли «Союз» и «Аполлон» в космосе.
Помню, с каким нетерпением я ожидал, когда умельцы, настоящие файн–механики, из инструментального цеха изготовят шарико–винтовые пары (ШВП), а сборщики из цеха электромеханики соберут первую модель. Каждый день я бегал в оба цеха, на первое и второе производство, чтобы не пропустить важного момента. И все?таки мне это не удалось, откровенно говоря, я просто проспал. Утром Бобров рассказал, что сборку закончили ровно в 12 часов ночи. Недаром говорят, что настоящие чудеса происходят в полночь: механизм заработал.
Уже первая проверка еще на сборочном верстаке убедила, что основная идея была правильной, стыковочный механизм дифференциального типа оказался вполне работоспособным. Динамические испытания на стенде подтвердили это. Основные сомнения сразу отпали. Это был первый настоящий успех, такой важный на этом этапе.
Руководство настолько поверило в новую конструкцию, что решилось пригласить к нам самого Д. Устинова, в те годы секретаря ЦК КПСС, кандидата в члены Политбюро. Мне пришлось выступить в качестве гида в нашей скромной «ацетиленовой» лаборатории. Для стыковщиков это было большой честью: всемогущий Устинов очень редко опускался до столь детального уровня.
Испытания масштабных моделей сыграли большую роль в становлении нашего АПАСа, позволив не только проверить новый дифференциальный механизм, но и значительно усовершенствовать его. Пожалуй, самым важным оказалось то, что модели заставили думать, как упростить конструкцию, как одновременно сделать ее более простой и эффективной.
Еще раньше мне отчасти помогла критика оппонентов. Уже при выпуске чертежей на масштабную модель стало ясно, насколько сложным получился механизм, который связывал между собой штанги. Они соединялись при помощи десяти дифференциалов: пять основных обеспечивали пять степеней подвижности кольца, а пять дополнительных — работу пружин. К тому же большое число подвижных элементов увеличило потери на трение. Эти недостатки заставляли искать пути упрощения схемы. К счастью, такой путь нашелся и оказался действительно блестящим: в результате удалось сократить число дифференциалов в пять раз, вместо десяти их осталось всего два!
Только эта измененная кинематика механизма сразу превратила АПАС в законченную конструкцию, которая стала по–настоящему смотреться, «а значит, должна летать». Именно она сработала на орбите 19 июля 1975 года и продемонстрировала свои достоинства в неожиданно тяжелых условиях второй стыковки, которую заранее назвали тестовой, то есть испытательной. Позднее кинематика стыковочного механизма практически без изменений перекочевала в АПАСы нового поколения. В начале 90–х годов агрегаты под названием АПАС-89 установили на американский «Спейс Шаттл». И они стали стыковывать «Орбитеры» с нашим «Миром», а затем с МКС — международной космической станцией.
Недаром английская пословица гласит: потребность — мать изобретательства. Сейчас трудно восстановить подробности того, как пришла в голову эта идея, как произошло то, что называется словом «осенило». Такие моменты, когда работает, наверно, подкорковое мышление, в течение моей инженерной карьеры случались лишь считанное число раз.
Механизм винт—гайка в принципе имеет три степени подвижности, поэтому он почти неисчерпаем. В частности, его можно использовать как дифференциал. Именно это и требовалось найти и применить, эти лишние дифференциалы, которые обеспечили необходимую подвижность кольцу с пятью степенями свободы.
В масштабной модели вращались только гайки, а винты прикреплялись к кольцу через 2–степенной шарнир. Как оказалось, достаточно дать дополнительную вращательную свободу винтам и связать их попарно в каждой паре: винты — между собой, а гайки — между собой. Правда, дополнительно пришлось применить винты с правой и левой нарезкой. При этом 2–степенные шарниры винтов превратились в 3–степенные. Самое главное заключалось в том, что в результате осталось только два настоящих дифференциала (меньше, чем в автомобиле–вездеходе). Три дополнительные степени подвижности обеспечили три пары винтов, получивших дополнительную свободу вращения. Этим, однако, упрощение не закончилось.
В старой масштабной кинематике каждую степень подвижности обслуживали по паре дифференциалов, поэтому в общей сложности их набралось десять. Было что выбрасывать — целых восемь непростых компонентов!
Не могу удержаться и еще раз не сказать о том, что осталось только два дифференциала: их число уменьшилось в пять раз!
Наверное, такое не могло появиться сразу, без чертежей и действующей живой модели. Только после этого левше удалось «подковать блоху». Еще раз отдаю дань удаче, которая и привела к созданию хитроумной, но работоспособной и очень эффективной конструкции. Она воплотилась в виде механизма, изящного и непревзойденного, позднее поражавшего инженеров и ученых–механиков всего мира.
После того как модернизированная концепция стыковочного механизма окончательно сложилась, стало казаться, что так и надо было делать с самого начала. Ведь никаких новых, доселе неизвестных компонентов в ней не появилось. Так часто бывает: глядя на машину, удивляешься не тому, как она сделана, а тому, как ты раньше этого не придумал, ведь все так просто, почти очевидно. Сейчас кажется — совсем просто, понятно даже сообразительному школьнику, такое бывало не раз…
В октябре 1971 года американцы назвали дифференциальный механизм просто работоспособным. Даже год спустя при демонстрации масштабных моделей они почти не критиковали его сложную кинематику. Когда Джонсон делал заявление о том, что НАСА согласно принять концепцию Советов, он не сказал, что готов использовать стыковочный механизм в целом. В то же время его замечания, что НАСА не прочь использовать чистую электромеханику, наводят на дополнительные размышления.
20 лет спустя, когда мы вместе стали рекомендовать АПАС-89 целиком, со всеми его потрохами, для проекта «Спейс Шаттл» — «Мир», у Джонсона уже не было сомнений в его эффективности.
Начав этот рассказ с того, что мне удалось «подковать блоху», я воспользовался красивой историей, хорошо известной легендой для сравнения, чтобы оживить, наверное, достаточно скучное описание техники. Нет, я не «побил» своего заморского коллегу, как это сделал знаменитый тульский умелец, хотя по рождению я тоже левша. Просто развил общую начальную идею, дополнив ее остроумным и изящным конструктивным решением.
Если я здесь что?то преувеличил или приукрасил, так не слишком сильно.
Демонстрация моделей, состоявшая на октябрьской встрече 1972 года в Москве, вызвала оживленный интерес специалистов, включая космонавтов и астронавтов. Пресса также не обошла нас своим вниманием. Впервые стыковочные фотографии публиковались во многих газетах и журналах.
Мне было интересно узнать профессиональное мнение американцев о нашей технике. В своем архиве я до сих пор храню листок с комментариями Дж. Джефса, вице–президента фирмы «Рокуэлл», одного из тех, кто воплощал в жизнь лунную программу «Аполлон», создавал космическую станцию «Скайлэб», вместе с нами работал над ЭПАСом и другими проектами. Характерно, что этот листок с комментариями американец принес только на следующий день после моего обращения, взяв тайм–аут на обдумывание. Примечательно также, что эти комментарии больше относились к таким, на первый взгляд, мелким вопросам, как заделка электрических проводов, острые края деталей в местах прохождения электрических кабелей, контровка винтов и т. п. Тогда мне показалось, что все?таки это были мелочи, поскольку критиковалась лишь модель, не предназначенная для полета, мне?то хотелось услышать комментарии о принципе действия, о концепции.
Только много лет спустя мне стали известны детали того, как тяжело американцы преодолевали последствия пожара на корабле «Аполлон», унесшего жизни трех астронавтов (а среди самых активных участников той эпопеи был Джефс). И мне стало понятно их внимание к этим деталям.
Действительно, в космической технике нет мелочей, более того, ее надежность часто определяется подобными мелочами, именно из?за них чаще всего происходят отказы и срывы в полете. Уже в Калифорнии, на фирме «Рокуэлл», Джефс подчеркивал другую особенность космических полетов. «Когда корабли там, — при этом он многозначительно показывал пальцем вверх, — чаще всего уже ничего нельзя исправить». Когда от других слышишь то, что прочувствовал на собственной шкуре, убеждения становятся крепче.
В декабре 1972 года состоялись испытания масштабных моделей. Это была первая совместная практическая работа в рамках ЭПАСа. Как и при переговорах в октябре, нам пришлось встречаться в ИКИ, в Институте космических исследований АН СССР. Другой открытой базы у нас не было. ИКИ находился в стадии становления, здание длиной в 200 с лишним метров еще строилось, и его заселяли по частям.
«Как видите, мы расширили фронт наших работ в космосе», — сказал я тогда одному американцу. «Наверно, вы решили протянуть это длинное здание к вашей настоящей базе», — ехидно ответил он. «Наш адрес — не дом и не улица, наш адрес — Советский Союз», — отшутился я словами из популярной в те годы песни.
Советская космонавтика продолжала общаться с астронавтикой через дупло, но это дупло расширялось. Первые испытания проводились в длинных коридорах и холлах ИКИ, настоящие лаборатории появились только к завершающей стадии работ над проектом. Советская власть очень заботилась о двух вещах: о престиже и о секретах. В данном случае секретность конкурировала с престижем, «перша коханна перемогла другу», как сказали бы украинцы.
Несмотря на ограничения и трудности, наша объединенная группа провела первые совместные испытания. Мы вместе проверили механический интерфейс, согласованный лишь девять месяцев назад. Были детально проверены четыре интерфейсных чертежа, наш международный конструкторский документ ДВО 50004. Шаг за шагом провели все стыковочные операции. Обе модели поочередно выполняли активную и пассивную роль, почти так же, как два с половиной года спустя сделали это их полномасштабные андрогинные братья в космосе.
Наряду с чисто техническими результатами, специалисты обеих стран приобрели дополнительный практический опыт. В конце декабря, накануне католического Кристмаса наши коллеги уезжали домой с хорошим настроением.
Еще через две недели, на православное Рождество, мне исполнилось 40 лет. Вступив в третье 20–летие, я с оптимизмом смотрел в будущее. Первый успех открывал дорогу для дальнейшей работы над полномасштабной существенно усовершенствованной конструкцией. Мы завершили выпуск детальных чертежей. Наступил год 1973–й — год отработки АПАСа.
Во время проведения совместных испытаний в Москву прибыл Ч. Бигз — небольшого роста любезный рыжий американец, специалист по связям с общественностью. С нашей стороны от АН работал И. Почиталин, который был каким?то родственником вице–президента, академика М. Д. Миллионщикова. Ранее Почиталин, отличный переводчик с английского, издал прекрасную книгу о Нильсе Боре на русском языке. Тогда, в декабре, они с Бигзом подготовили и подписали план совместного участия в авиасалоне в Ля Бурже, намеченном на май следующего, 1973 года. Главным экспонатом выставки стали макеты кораблей «Союз» и «Аполлон», состыкованные пока только на земле. К этому большому «яркому вагону» решили прицепить «маленькую тележку» — модели АПАСов. Мы надеялись, что среди полумиллиона посетителей авиасалона наверняка найдутся такие, которые обратят внимание на наше андрогинное творение. Париж во все времена и во всех областях был законодателем мод; 1973 год оказался первым, но не последним нашествием современных андрогинов в Мекку общечеловеческой культуры.
Меня тоже собирались послать в Париж вместе с моделью. Как полагалось, оформление документов было запущено. Вызванный из подмосковного санатория в конце зимы, я отвечал на вопросы министерской выездной комиссии; меня спросили: «А не надоело ли вам ездить стыковаться за границу», — на что последовал мой адекватный ответ: «Если Родина прикажет…». В те годы мне не приходилось бывать в Париже, но, по–видимому, кому?то это дело уже надоело. Короче, в Париж, в Ля Бурже, я так и не попал. Возможно, это было к лучшему.
Нешуточный инцидент произошел с нашим ведущим проектантом Л. И. Дульневым. В одном из парижских магазинов его при очень странных обстоятельствах толкнули в стеклянную витрину. Однако основные неприятности произошли в Москве, где спустя пару недель его обвинили в сокрытии инцидента. Первым о происшедшем доложил Почиталин. Я тоже оказался замешанным в этом деле, хотя и не был в Париже. Как бы между прочим, мне намекнули о таком же грехе: почему, услышав о происшедшем от Почиталина, я не доложил сразу же куда следовало. Стояла середина 1973–го, и мне все это показалось тогда не очень серьезным. Более серьезные дела нас ждали только через год. Наверное, эта была мелкомасштабная, модельная репетиция. Кто?то был уже умнее нас, действовал расчетливее, начал играть свою игру, готовясь к полномасштабной кампании.
Дульнева сделали невыездным, а кто?то вскоре получил повышение по службе.
Данный текст является ознакомительным фрагментом.