Только мысль
Только мысль
Учебный год в Париже, как и год административный, светский, академический и литературно-театральный, начинается с ноября месяца. Первого ноября 1912 года скорбью отзовутся сердца коллег Пуанкаре по университету и его учеников, для которых этот день станет слишком явным напоминанием о внезапно постигшей их утрате, ибо новый учебный год на Факультете наук открывается без одного из лучших его профессоров.
1 ноября — один из наиболее трогательных и торжественных для французов праздников: день всех святых и всех умерших. Уже с утра в широко открытые ворота старинного кладбища Пер-Лашез со сдержанным рокотом вливается людской поток. Живые спешат отдать долг памяти тем, кто безвозвратно ушел от них в царство теней. Очутившись среди рядов белых могильных плит, толпа в почтительном молчании движется вперед, словно загипнотизированная возвышающимся вдали большим серым памятником. Это «Aux Morts» — «Памятник всем умершим» скульптора Бартоломе. Кому из парижан не знакома эта печальная вереница запечатленных в камне людей, влекомых в широко открытые врата Смерти? В позе каждой застывшей фигуры воплощен свой трагизм ожидания, от безутешного отчаяния до тупой обреченности перед неизбежным. Но среди ожидающих роковой очереди нет никого, кто мог бы олицетворять Пуанкаре. Нет человека, споткнувшегося на бегу с тяжелой ношей на плечах, нет гордого завоевателя незнаемых земель, нежданным недугом выброшенного за грань жизни, нет, наконец, ученого, непреоборимая инерция мысли которого перехлестнула за последний порог жизненного пути, вырвалась вперед, раздвинув границы его творческой биографии, которой оказалось тесно в пределах отпущенного ему срока бытия.
В этот осенний семестр французские и зарубежные коллеги Пуанкаре, перелистывая свежие научные журналы, наткнутся на его статью. Остановилась гениальная машина мозга, но продолжает пульсировать его животворящая мысль, воплощенная в коде математических формул. Пускай иссяк водяной поток, жернова мельницы не хотят остановиться.
Последняя работа Пуанкаре была опубликована на страницах того самого итальянского журнала, в котором появилась его фундаментальная работа по специальной теории относительности. Посвящена она была исследованию периодических движений, вопросу, к которому автор неоднократно возвращался на протяжении всей своей жизни. Пуанкаре не был полностью удовлетворен своим доказательством существования периодических решений в задаче трех тел. Наличие их ему удалось установить только при малой величине массы одного из тел, когда он смог воспользоваться своим методом малого параметра. Оставалось неясным, что происходит в случае больших значений масс, какие из периодических движений при этом остаются, какие исчезают. Размышляя над мучившей его проблемой, Пуанкаре незадолго до смерти пришел к выводу, что решение ее связано с некоторой геометрической теоремой, которую он тут же сформулировал. Если справедливо утверждаемое им геометрическое положение, то для каждого обычного движения существуют достаточно близкие к нему периодические движения. И в последней работе, перекинув мост от проблем небесной механики к задачам чистой геометрии, на первый взгляд не имеющим с ними ничего общего, Пуанкаре остался верен своему ассоциативному методу.
Поисками доказательства геометрической теоремы Пуанкаре занимался около двух лет, но безрезультатно. В то же время ему никак не удавалось обнаружить хотя бы один пример, который противоречил бы высказанному утверждению, свидетельствуя о его неправильности. Все проверенные им частные случаи лишь подтверждали теорему, и каждый новый рассмотренный вариант укреплял его уверенность в том, что она верна. Но это еще не значило, что неблагоприятный контрпример вовсе не существует. Быть может, ему просто не удалось на него наткнуться и где-то в бескрайнем море не изученных им ситуаций скрывается коварный риф, о который разобьется корабль его надежды? «Мое убеждение в том, что теорема справедлива, укреплялось со дня на день, но мне не удалось подвести под него солидное основание», — признается сам Пуанкаре.
Доказать теорему — значило решить большую проблему небесной механики: научиться отыскивать периодические решения для самой общей постановки задачи трех тел. Это было бы открытие первостепенной важности, венец всех напряженных многолетних усилий Пуанкаре. Но он не стал ждать собственных результатов, а предложил теорему всему ученому миру, опубликовав ее без доказательства и высказав твердое убеждение в ее справедливости.
Интуиция не обманула его, как не обманывала и раньше. Теорема действительно была вскоре доказана. Интуиция не обманула его и в том, что подсказала ему столь необычное решение: поспешить с публикацией неоконченного исследования. Любому ученому нелегко было бы решиться на такой шаг, тем более трудно было это сделать Пуанкаре, занимавшему совершенно исключительное положение в науке того времени. Только очень важные обстоятельства могли вынудить его на этот поступок.
Не раз бывало, что вместе со смертью выдающегося ученого человечество лишалось уже совершенного открытия, даже не ведая об этом. Проходили годы, а порой и десятилетия, пока необнародованное открытие переоткрывалось кем-нибудь другим. Потом в записных книжках или бумагах покойного обнаруживали свидетельства озарившей его идеи, над которой он продолжал работать до самой последней своей минуты. А сколько таких назревших, но незавершенных открытий кануло в безвестность вместе с утерянными после смерти автора материалами! Необъяснимая предусмотрительность Пуанкаре избавила человечество от одной из таких потерь. Он не только интуитивно предвосхитил разгадку, но сделал все для того, чтобы открытие состоялось, и состоялось как можно быстрее. Пускай автор не дал доказательства сформулированной им теоремы, но он исключительно глубоко проанализировал сущность исследуемого вопроса. Весьма изобретательно преобразовав сложнейшую механическую задачу в геометрическую, Пуанкаре низвел проблему на совершенно иной уровень, натолкнул шедших по его следам исследователей на новые ходы мысли. Открытие как будто висело на кончике пера, словно готовая упасть капля чернил.
Странное и противоречивое создается впечатление. До последнего момента человек ведет себя так, словно бы у него и мысли не возникает о близком конце: намечает планы, назначает встречи, обусловливает поездки. И в то же время такие строки, сопровождающие посланную в печать статью: «Никогда до сих пор я не выступал в печати с настолько незаконченной работой… Представляется, что в подобном положении я должен был бы воздержаться от какой бы то ни было публикации, пока не решу вопроса; после бесполезных попыток, которые я предпринимал в течение ряда долгих месяцев, мне показалось, что самым мудрым решением было бы предоставить проблеме созревать, а мне — отдохнуть от нее несколько лет. Однако это было бы правильно, если бы я был уверен в том, что смогу со временем снова взяться за эту проблему, но, учитывая мой возраст, я не могу за это ручаться». Почти то же самое он пишет Дж. Б. Гучча, редактору итальянского журнала, в который отправил свою статью. При этом он добавляет: «…полученные результаты могут направить исследователей на новые и неизведанные пути и кажутся мне слишком многое обещающими, несмотря на причиненные мне ими разочарования, чтобы я ими пожертвовал». Разумеется, не возрастом объясняется пессимистическое настроение Пуанкаре. Ему было всего лишь 58 лет, и многие из его сверстников, в том числе Аппель и Пикар, пережили его не на один десяток лет. Дело было, по-видимому, в каком-то необъяснимом предчувствии, тяготившем ученого.
Так появилась в печати статья Пуанкаре с недоказанной теоремой, в которой автор завещал коллегам по труду и творчеству последнюю вспышку своей мысли. Одна только мысль осталась от выдающегося интеллекта. Так мало и в то же время так много. Ведь мысль — это и есть Пуанкаре. Один из его бывших студентов как-то заметил: «Я полагаю, что такой человек часто, должно быть, имел ощущение, будто он есть только мысль».
Письмо к живым достигло адресата. Теоремой, которая получила название «последней теоремы Пуанкаре», занялись другие исследователи. Эстафета была незамедлительно подхвачена младшим поколением математиков. Словно наделенный даром самодвижения, сгусток мысли Пуанкаре начал прорастать и развиваться. Уже через несколько месяцев задача была решена молодым американским ученым Джорджем Биркгофом, сразу завоевавшим себе этим успехом всеобщую известность. Доказав, что периодические движения действительно могут служить основой для изучения всех движений в задаче трех тел, он завершил одно из важнейших творений Пуанкаре. Семена давали всходы, хотя не стало уже самого сеятеля.
Макс Планк утверждал, что каждый выдающийся исследователь вносит свое имя в историю науки не только собственными открытиями, но и теми открытиями, к которым он побуждает других. Пуанкаре в лице Биркгофа даже после своей физической смерти приумножает свою славу великого первооткрывателя научных истин. У него не было учеников в узкопонимаемом смысле этого слова. Да и какие могут быть ученики у столь неподражаемого творца? Почерк гения не копируется и не размножается простым общением; это неповторимый оригинал, который может существовать только в единственном экземпляре. Такова уж участь вершин, вознесенных над общей массой гор и долин, что им суждено оставаться одинокими. Но всякого, кто продолжал и развивал идеи выдающегося мастера научных теорий и методов, смело можно отнести к его ученикам, независимо от того, были ли они когда-нибудь в контакте, или их разделяло пространство и время.
Если попытаться перечислить всех математиков, механиков, физиков и астрономов, которые в той или иной мере отталкивались от трудов Пуанкаре, углубляли их, разворачивали их применение или просто пользовались его результатами, то пришлось бы назвать немало славных имен из самых различных областей точного естествознания. «Нет на земном шаре ни одного ученого, достойного этого имени, который не считал бы себя в некоторой степени одним из его учеников», — говорит Пенлеве. Но 28-летний доктор философии Джордж Биркгоф, без сомнения, доказал, что может считаться одним из наиболее достойных и оригинальных последователей Пуанкаре. Американский математик О. Веблен свидетельствует, что Биркгоф усердно изучал все работы великого француза и в беседах нередко ссылался на «Новые методы небесной механики». Другой американский ученый, М. Морс, прямо заявляет, что «настоящим учителем Биркгофа был Пуанкаре». Тесное знакомство молодого заокеанского математика с методами Пуанкаре и постоянный интерес к тому кругу вопросов, которые представлены в его основополагающем труде по небесной механике, объясняют, почему именно он смог так быстро доказать теорему и притом совершенно в духе своего учителя. Биркгофу же принадлежит ряд ценных обобщений «последней теоремы Пуанкаре», подтверждающих ее непреходящее значение. Полтора десятилетия спустя ученик воздает памяти учителя необычную дань, став инициатором создания одного из наиболее почетных памятников Пуанкаре на родине.
В начале 1926 года, будучи уже ведущим американским математиком, профессором Гарвардского университета, Джордж Биркгоф делится с одним из членов Академии наук Франции своим желанием создать в Париже на средства рокфеллеровского фонда исследовательский центр по математической физике. Этим проектом сразу же заинтересовался член Парижской академии, математик Эмиль Борель. Свою научную карьеру Борель начал с того, что в возрасте 25 лет дал прямое доказательство знаменитой теоремы Пикара, с которой когда-то началась научная карьера последнего. Тем самым он решил проблему, сложность которой в течение двух десятков лет оставалась камнем преткновения для всех математиков. Первый громкий успех позволил ему перебраться из Лилльского университета, где он преподавал после окончания Высшей Нормальной школы, в Париж. Вскоре он становится зятем Аппеля.[70] Успешно работая в различных областях математики и создав себе своими трудами мировую известность, Эмиль Борель вместе с тем активно участвует в общественной жизни страны, живо интересуясь социальными и политическими проблемами. С 1924 года он становится депутатом парламента, а в 1925 году занимает пост военно-морского министра в кабинете, возглавляемом другим известным математиком — П. Пенлеве.
К тому времени французская наука утратила свое ведущее положение в математической физике. Поэтому Борель прилагает огромные усилия, чтобы воплотить в жизнь щедрое предложение Биркгофа. Благодаря его настойчивости и организаторским способностям проект был быстро утвержден. Удалось изыскать французские фонды, согласно условиям равные американским субсидиям. Осенью 1928 года начал функционировать созданный на эти средства новый институт, которому предстояло проводить исследования в области теории вероятностей, математической и теоретической физики. На торжественной церемонии открытия, на которой председательствовал премьер-министр Раймон Пуанкаре, новому научному учреждению было присвоено имя Анри Пуанкаре. Некогда возглавлявшаяся им кафедра теории вероятностей и математической физики, которой ныне руководил Эмиль Борель, влилась в институт. Борель стал первым директором Института имени Анри Пуанкаре.[71]
Сошел со стапелей большой «корабль науки», которому предстояло нести в будущее самое ценное человеческое достояние — мысль. Мысль есть инструмент и продукт всей жизнедеятельности человека, конечная цель и оправдание его бытия. Человеческой мысли Анри Пуанкаре посвятил яркие, вдохновенные слова: «…Геологическая история показывает нам, что жизнь есть лишь беглый эпизод между двумя вечностями смерти и что в этом эпизоде прошедшая и будущая длительность сознательной мысли — не более как мгновение. Мысль — только вспышка света посреди долгой ночи.
Но эта вспышка — все».
Данный текст является ознакомительным фрагментом.