2. Метод. «Правила для руководства ума»
2. Метод. «Правила для руководства ума»
По замыслу трактат должен был состоять из трех частей, каждая часть должна была включать 12 «Правил». В первой части предстояло изложить собственно принципы метода; во второй — показать, как сделать эмпирию объектом теоретического исследования: построить математическую модель физической задачи; в третьей части предполагалось показать, как такую задачу решать. Но трактат в том виде, в каком он нам известен, состоит из полных восемнадцати «Правил»; следующие три «Правила» обозначены лишь заголовками, и после обозначенного таким образом «Правила XXI» Декарт ставит: «Конец».
Как видно уже из самого названия трактата, цель его — двойная. Во-первых, он предназначен «для руководства ума» в направлении его усовершенствования с тем, чтобы обладатель ума, достигнув определенной степени совершенства, искусства, смог открыть, «из-обрести», обрести из самого способа усовершенствования ума путь познания Истины. Это, следовательно, правила в классическом средневековом смысле, правила в смысле приемов, нормативов времени. Но в то же время они являются правилами методологическими, характерными для Нового времени: Истина не дана заранее, ее только следует открыть, открыть с помощью метода, орудия, которым может пользоваться «всякий…как бы ни был посредственен его ум» (11, стр. 111); для успешного решения задачи — ввести ключевое, принципиально новое разделение на «нас, способных познавать», и на независимый от нас объективный мир «самих вещей, которые могут быть познаны» (11, стр. 110).
«Правила…» — это первое развернутое систематическое «сочинение», соединение двух эпох, двух «времен», соединение концов «порванной нити» и одновременно это — развернутый план, программа будущих сочинений — в обоих смыслах этого слова. Здесь впервые с такой отчетливостью предстает Декарт «раздвоенный», в ставшей уже внутренней «диа-логике», Декарт, не равный самому себе, «дуальный», человек типично средневековый и в то же время человек, целиком относящийся к Новому времени, — субъект деятельности, схваченный в момент своего коренного превращения.
Отмеченная выше историческая необходимость вычленения метода в форме метода математического предстает в «Правилах…» как картина внутрилогических закономерностей теоретического развития Декарта — в исходном, отправном пункте этого развития, в своем «замысле».
Придя к выводу, что «метод необходим для отыскания истины» (11, стр. 88), Декарт вплотную приступает к его разработке. «Главный секрет метода» состоит, по его словам, в том, что рассматривается не та или иная вещь сама по себе («нужно… их не рассматривать изолированно одну от другой»), а «ряд вещей, в котором мы непосредственно выводим какие-либо истины из других истин». Для этого вначале надо определить, «какие из них являются самыми простыми», а затем остается лишь «следить… как отстоят от них другие: дальше, ближе или одинаково» (11, стр. 96). Перед нами вновь предстает знакомая картина, приводящая к мысли о «задании» процесса в терминах протяженности. Но здесь речь идет уже о заданности внутри самого способа задания — в методе. Благодаря тому что наряду с вещами рассматриваются и их связи, методическое движение представляет собой непрерывный процесс. Так, например, находя «посредством различных действий отношение сначала между величинами А и B, затем между В и С, между С и D и, наконец, между D и E», для того чтобы уловить их общую связь и в дальнейшем учитывать ее, необходимо «обозревать их путем последовательного движения представления так, чтобы оно представляло одно из них и в то же время переходило бы к другому» (11, стр. 101. Курсив мой. — Я. Л.).
Элементарным актом связи, своего рода «квантом» движения как непрерывного логического (рационального) перехода выступает акт интуиции. Характерно, что в «Правилах…» эта логическая «единица» предшествует введению единицы количественной и обусловливает его. Декарт выделяет два основных средства познания: интуицию и дедукцию. В дальнейшем к ним присоединяется еще и третье — полная энумерация, или индукция.
Под интуицией имеется в виду «понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим, или, что одно и то же, прочное понятие ясного и внимательного ума, порождаемое лишь естественным светом разума» (11, стр. 86). Интуиция в «Правилах…» Декарта является «интуицией простейших», т. е. элементарных, геометрических образов, взятых в их связи. В интуиции осуществляется смыкание теории и опыта — в его всеобщем, достоверном геометрическом выражении; именно поэтому интуиция выступает элементарным актом познания и его «точкой роста», а само познание понимается как последовательность, упорядоченная цепочка интуиций.
Порядок следования составляет сущность «другого способа познания, заключающегося в дедукции (в переводе на язык математики — в алгебре. — Я. Л.), посредством которой мы познаем все, что необходимо выводится из чего-либо достоверно известного». Разница между интуицией и дедукцией состоит в том, «что под дедукцией подразумевается именно движение или последовательность, чего нет в интуиции» (11, стр. 87–88). Полная «математическая энумерация» «завершает» обретенное таким образом знание (11, стр. 101). Но она одновременно и продолжает его, и вновь «начинает», т. е. обеспечивает непрерывное воспроизведение процесса. Действительно, то, что охвачено индукцией, становится единой частью знания, освоенной интуицией; но тогда мы вновь имеем дело с исходным образом, посылкой, «схватываемой» одним интуитивным актом.
Шаг за шагом развиваемая таким образом система постоянно включает в себя в качестве гаранта истинности свои основания и в итоге каждого шага развития вновь обращается к этим основаниям, изменяя их, подвергая их сомнению. Сомнение — «сомневающаяся» способность мышления — единственный достоверный источник всей системы знания, и сомнение — единственный способ развития знания; исходная посылка и элементарное правило вывода, оба единственно истинные, совпадают! Но здесь это впервые предстает (сейчас будет показано, как) в «технологии» развития метода, в элементарной «клеточке» его функционирования, и это же становится закономерностью развития всей системы воздвигаемой науки. Сомнение, бывшее до сих пор фактором моральным, снимается в сомнении методологическом, методическом. «Девиз» движения отныне — при всем разнообразии, сложности и переплетенности форм и систем — двоякий: «Преодолеть себя!» и «Назад, к истокам!». Приглядимся же со вниманием к наметившейся «клеточке».
По мысли Декарта, метод является орудием человека, и схема взаимодействия человек — метод в процессе работы очень проста и сводится к следующему: метод совершенствует определенные способности человека, доводя само совершенство до крайних границ. Происходит это в ходе анализа способностей, состоящего в сведении их к элементарнейшим, далее нерасчленяемым, простейшим действиям. Но в таком виде они теряют всякую конкретную связь с той или иной конкретной особенностью конкретного индивида и становятся в силу этого элементами метода, в терминологии Декарта — обретают статут простейших положений, аксиом, на которых базируется метод. Такова суть первых семи «законополагающих» «Правил…». Именно в постоянном движении этого «челнока» декартова метода разворачивается нить дедуктивного следования и ткется основной узор теоретических конструкций. Вот почему, с другой стороны, аксиомы, или простейшие положения метода, совпадают с простейшими правилами действия, которые необходимо производить над этими аксиомами. Ввиду того, что они являются, в силу своей простоты, крайне неразвитыми положениями, их совпадение носит абстрактный характер.
Мы рассмотрели лишь один аспект орудийного использования метода: отношение субъект деятельности — орудие деятельности. Но взятое само по себе, это отношение оставалось бы бесплодной схемой (столь характерной для всего аппарата поздней схоластики), если бы не его обращенность на объект деятельности — материальный мир в целом, со всем бесчисленным множеством составляющих его предметов и явлений.
В рамках жесткого Декартова расчленения на субъект познания и независимый от него объективный мир процесс познания осуществляется посредством интуиции и дедукции. Интуиция схватывает цельные, «фигурные» геометрические образы, которые посредством дедукции расчленяются и тем самым объясняются и понимаются. И если интуицию, согласно Декарту, можно рассматривать как некий аналог геометрии, геометрического метода (или, точнее говоря, геометрического «варианта» всеобщего метода), то дедукция имеет явную тенденцию к методу алгебраическому. Здесь, таким образом, развивается картезианская концепция математики, согласно которой алгебра является способом понимания геометрии.
Для Декарта критерием конечной объективности предмета является его бесспорность и очевидность для ума. Именно через «самоочевидность» раскрывается тождество объективности и логичности. В качестве основания такого тождества утверждается субстанциональность вводимой Декартом в «Правиле XIV» протяженности. Протяженное и дедуктивное — вот два образа непрерывности, которые взаимоопределяют друг друга. Но все дело в том, что их взаимоотношение не является непосредственным, хотя на первый взгляд это представляется именно так. Аксиомы, или простейшие положения метода, оказываются теми аксиомами, на которых базируется теория, а простейшие правила действия субъекта обретают в методе характер правил вывода из аксиом. И снова в силу предельной простоты, абстрактности и тех, и других аксиомы сами задают простейшие правила вывода.
Понимаю, все это настолько нелепо звучит для уха современного читателя, что если не раньше, то теперь уж, вероятно, не правила, а сам он, читатель, «выведен из себя». Да и автору самому, признаться, стало как-то не по себе: если в самом своем «замысле» и последующем его воплощении и развитии вся наука, целостная «теоретическая система — как вытекает из только что сказанного — вновь может быть представлена как…геометрический образ — предмет интуитивной очевидности, но теперь уже …сам в себе несущий свое обоснование» (23, стр. 206. Курсив мой. — Я. Л.), то куда все это девалось, почему сегодня чуть ли не каждая дисциплина должна развивать, параллельно со своим теоретическим позитивным «телом», гигантский аппарат обоснования своих собственных оснований, и каждый раз дело кончается, как правило, набором парадоксов?
Сделаем небольшое отступление. В так называемых «приложениях» общего метода отмеченное обстоятельство — аксиомы сами задают простейшие правила вывода — воплощается, например, в физике введением понятия инерции, в «Геометрии» — фактическим включением аксиом и определений в простейшие возможные построения — постулаты. В первом случае ответ на вопрос «как движется?» одновременно объясняет и «почему движется?». Это, забежим вперед, — спинозовская «causa sui»[12] физики, идеал науки на каждом этапе ее развития. Что касается «Геометрии», то в рамках простейшего математического аппарата, используемого Декартом, — теории пропорциональных отношений, — таким постулатом является построение единичного отрезка. Как представляется, в этом коренится причина того, почему Декарт, уже обладая разработанным им аппаратом алгебраической символики, конечную цель решения алгебраических уравнений сводит к построению отрезков прямой…
Итак, перед нами элементарный акт познания (деятельности) с «компонентами»: субъект — метод — объект, «ядро» этой «триады» — метод.
Таким образом, заметим попутно, спускаясь с «поверхности» привычного и в общем верного, формального противостояния, противоположения декартова метода и его дуалистической философии в самую сердцевину метода: разворачивание метода как раз и составляет содержание теории, философии, и наоборот. Так что и здесь, «поверив» Декарту, что он сначала создал, культивировал метод, а затем с помощью этого «орудия» начал возводить здание, мы сразу же закроем себе путь к проникновению в самую суть проблемы, стоящей перед нами во всей своей остроте, проблемы, имя которой — «Декарт». Связь метода и теории здесь гораздо органичнее.
Действительно:
Во-первых, метод, согласно Декарту, представляет собой совокупность правил перевода интуитивного в дедуктивное, одновременного — в последовательное.
Во-вторых, он задает способ сведения (регресса) к «простейшим» (аксиомам — исходным геометрическим образам), и этим регрессом является доказательство. Выведение из «простейших» является обращением доказательства и протекает параллельно последнему. Оно, по выражению Декарта, возвращается по тем же «ступеням». Происходит это по правилам вывода, обретенным в конечной точке регресса, в пункте «возврата», и позволяет осознать само доказательство. Вот почему вывод и тождествен («по тем же ступеням»), и не тождествен («осознание») доказательству. Естественно, что временное здесь с необходимостью исчезает, растворяясь в упорядоченной последовательности интуитивных актов. Для ясного понимания этого обстоятельства следует учесть, что Декарт, говоря о движении вообще (движении как изменении, как всеобщем принципе — в контексте всеобщего метода, а не того или иного из его «приложений»), имеет в виду мыслительное движение. Время здесь является мерой, «числом» движения.
Наконец, в-третьих, следует упомянуть об уже отмеченном двойственном характере самих «Правил для руководства ума». Для того чтобы пояснить эту мысль, вернемся на время к тому реальному эксперименту, который осуществил Декарт, руководствуясь своими первоначальными правилами, в диоптрике. Ведь если мы вдумаемся, то поймем, что эксперимент Декарта носил двойной характер. Это был естественнонаучный эксперимент в обычном смысле этого слова (линзы, преломление света, фокусные расстояния и т. п.). Но это был одновременно своеобразный experimentum crucis[13] и для самих декартовских правил. Здесь вопрос стоял так: а годятся ли действительно эти правила как руководящая нить при совершении открытий, или они носят чисто схоластический, словесный, принципиально непроверяемый характер? Реальный опыт, поставленный Декартом, послужил ответом на оба эти вопроса: и вопроса, касающегося «природы вещей», и вопроса, касающегося природы ума.
Но самое интересное в том, что необходимость такого эксперимента в отношении самих декартовских правил — это не просто частный биографический факт «из жизни Декарта», нет: эта необходимость заложена в самих правилах.
Не случайно последние правила в этом незаконченном трактате касаются уже не общих логических требований, но необходимого сочетания геометрического и алгебраического подходов при решении естественнонаучных проблем. В заключительных «Правилах» Декарт направляет своего «героя» — ум исследователя Нового времени — на вполне определенный объект, обнаруживает, что его рождающийся метод вовсе не является абстрактным методом вообще, а по самой своей природе, в самый момент своего рождения ориентирован на изучение того мира, в котором господствуют законы геометрической оптики.
В движении этого эксперимента соединяются в логически связанное целое все основные правила метода. Они действуют уже не рядом друг с другом, а последовательно, прямо обнаруживая свою эвристическую силу. В этом опыте реализуется то обращение и взаимопревращение дедукции и интуиции, которое составляет логическую схему метода Декарта. Далее. Именно в сфере оптики реализуется (и у самого Декарта, и в дальнейшем развитии науки) возможность геометрического понимания физических объектов и возможность полагания движений в их динамической определенности как геометрико-кинематических элементов — линий, углов, фигур. Наконец, именно в этом эксперименте была впервые опробована эвристическая сила взаимопревращения аналитических и геометрических представлений. Так в простеньком и достаточно частном эксперименте были испытаны все те «компоненты» Декартова замысла математизации физики, которые затем разрослись в сложную методологическую и теоретическую систему современной науки.
Приглядимся к элементарному акту познания (в «Правилах…» Декарта) еще с одной стороны. Интуитивно схваченное целое, которое затем посредством дедукции разворачивается, становясь основой сложнейших доказательств, само уточняется в процессе дедукции. Согласно Декарту, в ходе и по мере развития метода интуиция совершенствуется, схватывая в качестве единого «блоки» все возрастающей сложности. В связи с этим значительность совершаемых открытий все более возрастает. Сама жизнь Декарта была своеобразным аналогом такого постоянного возвращения к началам и превращения этих начал во все более глубокие и всеобщие основы нового метода.
Творческое развитие Декарта в этот период было сведением общего плана новой науки, выработанного с позиций нового мировоззрения, к одной простейшей проблеме и венчающему ее опыту. В этом развитии мысль Декарта вновь и вновь совершала тот же челночный ход. Метод, развиваемый Картезием, претворялся в новую, более глубокую теорию (и естественнонаучного, и общефилософского плана), а этот новый фрагмент теории оказывался основой для нового развития метода в его эвристическом плане, для развития метода как логики открытия, логики изобретения.
Для того чтобы читатель четче представил себе место «Правил для руководства ума» не только в развитии самого Декарта (что является нашей основной задачей), но и во всем развитии новой науки, подчеркнем лишь одну существенную деталь. Каждый раз, когда современный логик или математик обращает внимание на то, как совершаются открытия или изобретения, он неизменно обращается к «Правилам…» Декарта.
Приведу пример. В замечательной книге «Математическое открытие» (45) автор, Дж. Пойа, в качестве эпиграфов, раскрывающих основное содержание и направленность как обеих частей книги, так и ее ключевых глав, приводит либо выдержки из декартовских «Правил», либо те места трактата, которые вошли в «Рассуждение о методе». Во второй главе — «Метод Декарта» — автор отмечает: «В своих „Правилах“ Декарт стремился дать универсальный метод решения задач». Приведя затем схему этого метода, он продолжает: «С течением времени сам Декарт должен был признать, что имеются случаи, когда его схема является непригодной… В намерении, положенном в основу схемы Декарта, можно усмотреть нечто глубоко правильное. Однако претворить это намерение в жизнь оказалось очень трудно… Проект Декарта потерпел неудачу, однако это был великий проект, и, даже оставшись нереализованным, он оказал большее влияние на науку, чем тысяча малых проектов, в том числе таких, которые удалось реализовать» (45, стр. 45). Фактически «Математическое открытие» в том, что касается Декарта и его работы, было развернутой реализацией тех идей, которые Дж. Пойа анализировал еще в «Математике и правдоподобных рассуждениях», суммировав этот анализ в выводе, что Декартов трактат «должен рассматриваться как одна из классических работ по логике открытия» (44, стр. 198).
Но вернемся к жизни Декарта и к значению «Правил для руководства ума» в формировании новой науки.
В челночном движении своей мысли (от углубления метода к углублению теории и вновь к углублению метода) Декарт производит целую серию открытий, приведших к созданию современного алгебраического метода, к тому, что алгебра обретает собственную базу. Действуя на этой базе, алгебра окончательно отрывается от геометрии, и именно в этот момент происходит установление их плодотворного союза: на смену «геометрической алгебре» античных и средневековых математиков приходят аналитическая геометрия и собственно алгебра. Дальнейшее развитие метода намечается преимущественно в сфере алгебры, и этот переход отчетливо отражен в последних «Правилах…» трактата, точнее, в их заголовках: искомое обретено, и надо заняться детальной разработкой каждого из открытий, поток которых теперь нарастает…
Не вдаваясь в детали конкретного развития дальнейших событий (см., например, 10; особенно стр. 269–272, 278–287), отметим его ключевые моменты. В ходе занятий, относящихся непосредственно к решению сформулированной выше общей диоптрической проблемы, Декарт создал целый арсенал математических открытий и специальных методов, которые потом нашли свое место в едином общем алгебраическом методе и методе созданной им аналитической геометрии.
Первым по значению среди этих открытий является введение в геометрию координатных неизменных прямых, или (картезианской) системы координат. Благодаря этому дифференциальный подход к изучению движения получает возможность полного воплощения, ибо теперь каждая точка обретает свое «лицо» — координаты, определяющие ее местоположение. Теперь стало возможным говорить о непрерывно изменяющихся в зависимости друг от друга переменных величинах. Аналитическая геометрия начинает обретать свою собственную базу.
С введением координат движение снимается в терминах протяженности (пространства), в геометрическом образе кривой линии. Время, как таковое, исключается. Оно тоже представляется как одна из пространственных (протяженных) характеристик движения, как его координата на оси (времени): его величина задается отрезком прямой (в прямолинейной системе координат). Освобожденная от необходимости быть «самой себе методом», геометрия окончательно поглощает физику, и для достижения идеала теперь остается реализовать это тождество в масштабах Вселенной: Декарт вскоре (1630 г.) принимается за написание своего гигантского «Мира».
Другой шаг в деле создания аналитической геометрии был непосредственно связан с разработкой алгебраического метода как метода операционального исчисления, действующего на собственной основе. Решающим моментом в этом отношении была геометрическая интерпретация отрицательной величины, в результате которой она приобретала право на самостоятельное существование наряду с другими величинами. Благодаря этому появилась возможность переносить члены равенства из одной части в другую, а тем самым получающемуся уравнению придается операциональный, функциональный смысл. Уравнение f(х, у) = 0 теперь понимается уже как функция, связывающая две переменные величины (10, стр. 277). Появилось средство адекватного воспроизведения «чистого» (выражение Декарта) движения человеческой мысли в символах, его объяснения — того, что принято называть идеей движения. Понятие движения расщепляется в теории на две антиномические, «разно-пространственно» существующие «части» — геометрический образ (кривою линию) и аналитическое объяснение.
Целью науки (теории) становится полное слияние, единство физики и геометрии. Средством ее достижения, методом выступает расчленение, раздвоение фундаментального понятия — понятия движения и, следовательно, всех других основанных на нем «работающих» теоретических понятий. Здесь коренится способность взаимопревращений алгебраической и геометрической «модификаций» метода, таящая в себе громадные резервы его, объясняющая столь продолжительно сохраняющуюся стабильность действенности в истории.
Мы находимся у истоков образования той формы метода, которая при каждом «повороте» его последующего исторического развития — развивалась ли геометрия как проекция алгебры или же наоборот, — обеспечивала то, что в любом случае развивалось понятие движения. Это, к слову, позволяет решить загадку, не раз возникавшую и возникающую неоднократно перед исследователем: почему в интересующий нас период (конец XVI — первая половина XVII века), когда изучение механического движения выдвигается на первый план, в логическом аспекте и у Декарта, и у Спинозы движение выступает лишь как модус (у Спинозы — как бесконечный модус, присущий всем атрибутам)? Это, как нам кажется, объясняется тем, что в логике и философской проблематике эпохи незаметно, а иногда и явно вырабатывался способ наиболее эффективного превращения феномена движения из предмета изучения в метод логического движения, способ дедуктивного (последовательного — Декарт) воспроизведения в мысли цельных и одновременных геометрических образов. И это стремление проходит через всю последующую науку…
Раздваивается и сама теоретико-методологическая, философская деятельность Декарта — на мир как возможный (трактат «Мир…») и субъект его познания во всеоружии способов и средств («Рассуждение…» и «Метафизика»), которые (вновь!) потребуют своего «сочинения» в «геометрической диалектике»…
Произведенное разделение алгебры и геометрии позволило объединить их на принципиально новой основе. Прежде всего Декарт понял, что движение в знаках (символах) — в алгебре, представляющее движение познающего разума, и движение в образах — в геометрии, всеобщем эквиваленте познаваемого мира, тождественны между собой и протекают по одним и тем же законам. Все готово для решающего синтеза…
«Правила…» поистине неисчерпаемы, и в них, в «замысле» как реализованных, так и не осуществленных идей, надежд и стремлений, представлен почти весь грядущий Картезий. Здесь, на развилке, мы с благодарностью за узнанное и с сожалением расстаемся с ними.
Данный текст является ознакомительным фрагментом.