Великий сольвеевский спор, 1927 и 1930 годы
Великий сольвеевский спор,
1927 и 1930 годы
Упорные арьергардные бои, которые Эйнштейн вел против наступающей со всех сторон квантовой механики, достигли наибольшего напряжения в Брюсселе, во время двух знаменитых Сольвеевских конгрессов. В обоих случаях Эйнштейн выступал как провокатор, пытаясь нащупать брешь в торжествующей победу новой премудрости.
На первом из них, состоявшемся в октябре 1927 года, присутствовали три великих мастера, стоявших у истоков новой эры в физике, но теперь скептически настроенных по отношению к ее детищу – таинственному миру квантовой механики. Там были семидесятичетырехлетний Хендрик Лоренц, шестидесятидевятилетний Макс Планк и сорокавосьмилетний Альберт Эйнштейн. Хендрику Лоренцу, получившему Нобелевскую премию за исследования электромагнитного излучения, оставалось жить всего несколько месяцев. Макс Планк был обладателем Нобелевской премии за теорию кванта, а Эйнштейн – за открытие закона фотоэлектрического эффекта.
Среди остальных двадцати шести участников конгресса больше половины тоже в свое время стали лауреатами Нобелевской премии. Здесь же были и все чудо-мальчики новой квантовой механики, надевшиеся либо переубедить, либо победить Эйнштейна. Это были двадцатипятилетний Вернер Гейзенберг, двадцатипятилетний Поль Дирак, двадцатисемилетний Вольфганг Паули, тридцатипятилетний Луи де Бройль и представитель Америки тридцатипятилетний Артур Комптон. Был и представитель среднего поколения сорокалетний Эрвин Шредингер, зажатый между “сердитыми молодыми людьми” и стариками-скептиками. И конечно, здесь был сорокадвухлетний Нильс Бор, в прошлом “сердитый молодой человек”, который своей моделью атома способствовавший появлению квантовой механики, а теперь стойкий защитник вступающих в противоречие с интуицией следствий из этой теории25.
Лоренц попросил Эйнштейна сделать на конгрессе доклад о состоянии дел в квантовой механике. Эйнштейн сначала дал согласие, но потом отказался. “После длительных колебаний я пришел к выводу, что недостаточно подхожу для того, чтобы представить доклад, отражающий текущее положение дел, – ответил он. – Отчасти это связано с тем, что я не одобряю чисто статистический способ рассуждений, на котором основываются новые теории”. А затем он с горечью добавил: “Прошу вас, не сердитесь на меня”26.
Вместо него доклад, открывший конгресс, сделал Бор. Он не скупился на похвалу, описывая достижения квантовой механики. В субатомном мире нет определенности и строго выполняющегося принципа причинности, говорил он. Нет детерминистских законов, только вероятности и шанс. Не имеет смысла говорить о “реальности”, не зависящей от процесса наблюдения и измерения. В зависимости от характера ставящегося эксперимента свет может быть либо волнами, либо частицами.
Во время официальных заседаний Эйнштейн говорил очень мало. “Я должен извиниться, что не разобрался в квантовой механике достаточно глубоко”, – заметил он в самом начале. Но за обедом и во время долгих вечерних разговоров, возобновлявшихся за завтраком, он втягивал Бора и его сторонников в оживленные споры, затравкой для которых служила его любимая шутка о Боге, который не играет в кости. “Нельзя строить теории на основании большого числа всяческих “если”, – вспоминает Паули доводы Эйнштейна. – Это глубоко неправильно, даже если основывается на опыте и логически непротиворечиво”27.
“Вскоре дискуссия свелась к поединку между Эйнштейном и Бором, споривших о том, можно ли атомную теорию в ее нынешнем виде считать окончательной”, – вспоминал Гейзенберг28. Как сказал впоследствии Эренфест своим студентам, “о, это было восхитительно”29.
И во время заседаний, и в пылу неформальных дискуссий Эйнштейн пытался обработать своих противников, ставя искусные мысленные эксперименты, которые должны были доказать, что квантовая механика не дает полного описания реальности. С помощью хитроумного воображаемого устройства он пытался показать, что все характеристики движущейся частицы могут, по крайней мере в принципе, быть точно измерены.
Например, один из мысленных экспериментов Эйнштейна состоял в следующем. Пучок электронов пускают на экран со щелью. Пройдя через щель, электроны ударяются о фотографическую пластину, и их координаты фиксируются. Было еще много дополнительных элементов воображаемого прибора, таких, например, как задвижка, которая позволяла мгновенно открывать и закрывать щель. Все они были изобретательно использованы Эйнштейном, который хотел продемонстрировать, что теоретически можно одновременно знать точно координату и импульс электрона.
“Эйнштейн являлся на завтрак с каким-нибудь подобным предложением”, – вспоминал Гейзенберг. Происки Эйнштейна его, как и Паули, волновали не слишком. “Все будет в порядке, – твердили они, – все будет в порядке”. Но Бор часто приходил в возбуждение и начинал что-то исступленно бормотать.
Обычно в зал, где проходило заседание конгресса, они шли вместе, разрабатывая по пути стратегию, с помощью которой можно было бы показать несостоятельность идей Эйнштейна. “К обеду мы обычно уже могли доказать, что его мысленный эксперимент не противоречит принципу неопределенности, – вспоминал Гейзенберг, – и Эйнштейн признавал поражение. Но на следующее утро он появлялся за завтраком с новым, обычно более сложным мысленным экспериментом”. К обеду они уже знали, как опровергнуть и его.
Так это и продолжалось. Бору удалось отбить каждый мяч, посланный Эйнштейном, и показать, как принцип неопределенности в каждый момент времени действительно ограничивает доступную нам информацию о движущемся электроне. “Так продолжалось несколько дней, – рассказывает Гейзенберг. – И под конец мы – Бор, Паули и я – знали, что у нас под ногами твердая почва”30.
“Эйнштейн, мне стыдно за вас”, – ворчал Эренфест. Он был огорчен из-за того, что в отношении квантовой механики Эйнштейн проявляет ту же неуступчивость, что когда-то физики-охранители в отношении теории относительности. “К Бору он сейчас относится точно так же, как воинствующие защитники одновременности относились к нему самому”31.
Замечание, сделанное Эйнштейном в последний день конгресса, показывает, что принцип неопределенности был не единственным заботящим его аспектом квантовой механики. Его также волновало – и чем дальше, тем больше, – что квантовая механика, возможно, допускает действие на расстоянии. Другими словами, согласно копенгагенской интерпретации, нечто происшедшее с одним телом мгновенно определяет результат измерения свойств другого тела, расположенного в совершенно другом месте. Согласно теории относительности, пространственно разделенные частицы независимы. Если действие, произведенное над одним телом, немедленно влияет на другое тело, расположенное в отдалении от него, отметил Эйнштейн, “с моей точки зрения, это противоречит постулату теории относительности”. Никакая сила, включая гравитационную, не может передаваться со скоростью, превышающей скорость света, настаивал он32.
Может, Эйнштейн и проиграл спор, но он, как и прежде, оставался звездой конгресса. Де Бройль, мечтавший о встрече с ним, увидел Эйнштейна первый раз и не был разочарован. “Меня особенно поразило спокойное, задумчивое выражение его лица, общая доброжелательность, простота и дружелюбие”, – вспоминал он.
Этим двоим поладить было легко, поскольку де Бройль, как и Эйнштейн, пытался понять, можно ли как-то спасти причинность и достоверность классической физики. В то время он работал над так называемой теорией двойного решения, которая, как он надеялся, позволит обосновать волновую механику с точки зрения классической физики.
“Школа индетерминистов, главные адепты которой были молоды и бескомпромиссны, встретила мою теорию с холодным неодобрением”, – вспоминал де Бройль. Эйнштейн же, наоборот, одобрительно отнесся к его усилиям. Возвращаясь в Берлин, до Парижа Эйнштейн ехал одним поездом с де Бройлем.
Прощальный разговор состоялся на платформе Северного вокзала. Эйнштейн сказал де Бройлю, что все научные теории, если оставить в стороне их математическое выражение, должны допускать такое простое изложение, “чтобы даже ребенок мог их понять”. А что может быть столь же непросто, продолжал Эйнштейн, как чисто статистическая интерпретация волновой механики! “Продолжайте, – напутствовал он де Бройля, расставаясь на станции. – Вы на правильном пути!”
Но это было не так. К 1928 году был достигнут консенсус в мнении, что квантовая механика правильна, де Бройль сдался и присоединился к большинству. “Эйнштейн, однако, не сложил оружие и продолжал настаивать, что чисто статистическая интерпретация волновой механики не может быть полной”, – с глубоким уважением вспоминал де Бройль годы спустя33.
Действительно, Эйнштейн оставался упрямой белой вороной. “Я восхищен достижениями нового поколения молодых физиков, известными как квантовая механика, и я верю, что во многом эта теория истинна, – сказал он в 1929 году, когда сам Планк вручал ему медаль своего имени. – Но (это “но” всегда присутствовало, когда Эйнштейн выступал в поддержку квантовой механики) я верю, что ограничения, накладываемые статистическими законами, будут сняты”34.
Так была подготовлена сцена для еще более драматического, решающего сольвеевского поединка между Эйнштейном и Бором. Он состоялся на конгрессе, проходившем в октябре 1930 года. В теоретической физике столь увлекательные сражения случаются редко.
В этот раз, пытаясь поставить в тупик группу Бора – Гейзенберга и сохранить достоверность механики, Эйнштейн придумал еще более изощренный мысленный эксперимент. Как уже упоминалось, принцип неопределенности утверждает, что существует компромисс между возможностью точного измерения координаты частицы и точного измерения ее импульса. Кроме того, согласно тому же принципу неопределенность свойственна и процессу одновременного измерения энергии системы и времени, в течение которого происходит исследуемый процесс.
В мысленный эксперимент Эйнштейна входил ящик с излучением, снабженный затвором. Затвор открывается и закрывается так быстро, что за один цикл может вылететь только один фотон. Затвор контролируется точными часами. Ящик взвешивают и получают точное значение его веса. Затем в строго определенный момент времени затвор открывается, и вылетает один фотон. Ящик взвешивают снова. Связь между энергией и массой (помните, E = mc2) позволяет точно определить энергию. А зная показания часов, мы знаем точное время вылета фотона. Вот так-то!
Конечно, на самом деле есть ограничения, не позволяющие реально поставить такой эксперимент. Но теоретически он возможен и, следовательно, опровергает принцип неопределенности.
Брошенный вызов потряс Бора. “Он метался от одного к другому, пытаясь уговорить всех, что такого быть не может, что если Эйнштейн прав, значит, физике пришел конец, – записал один из участников конгресса. – Но опровержения он придумать не мог. Я никогда не забуду вид этих двух противников, выходящих из университетского клуба. Величественная фигура Эйнштейна, идущего спокойно, чуть улыбаясь иронически, и семенящего рядом с ним, ужасно огорченного Бора”35. (См. фотографию на с. 424.)
По иронии судьбы в этом научном споре после бессонной ночи Бору удалось заманить Эйнштейна в расставленную им же самим ловушку. В этом мысленном эксперименте Эйнштейн не принял в расчет свое собственное величайшее открытие – теорию относительности. Согласно этой теории в сильном гравитационном поле часы идут медленнее, чем при более слабой гравитации. Эйнштейн об этом забыл, но Бор помнил. При испускании фотона масса ящика уменьшается. Ящик находится в гравитационном поле земли. Чтобы его можно было взвесить, ящик подвешен на пружинке со шкалой. После вылета фотона он несколько поднимается, и именно этот небольшой подъем обеспечивает неприкосновенность принципа неопределенности для энергии и времени.
“Главным здесь был учет связи между скоростью хода часов и их положением в гравитационном поле”, – вспоминал Бор. Отдавая должное Эйнштейну, он любезно помог ему выполнить вычисления, которые и принесли в этом раунде победу принципу неопределенности. Но окончательно переубедить Эйнштейна не удавалось никому и никогда. Даже год спустя он все еще продолжал перебирать различные варианты подобных мысленных экспериментов36.
Кончилось все следующим: квантовая механика доказала, что как теория она вполне успешна, а Эйнштейн впоследствии пришел к тому, что можно назвать его собственным толкованием неопределенности. Он уже говорил о квантовой механике не как о неправильной теории, а только как о неполной. В 1931 году он номинировал Гейзенберга и Шредингера на Нобелевскую премию. (Гейзенберг был удостоен премии в 1932 году, а Шредингер – одновременно с Дираком – в 1933 году.) Предлагая их кандидатуры, Эйнштейн написал: “Я убежден, что эта теория, несомненно, содержит часть истины в последней инстанции”
Часть истины в последней инстанции. Эйнштейн все еще полагал, что есть еще нечто за реальностью, определяемой копенгагенской интерпретацией квантовой механики.
Ее недостаток в том, что она “не претендует на описание физической реальности, а только на определение вероятности осуществления физической реальности, которую мы наблюдаем”. Так в том же году писал Эйнштейн в статье в честь Джеймса Клерка Максвелла, великого мастера столь любимого им теоретико-полевого подхода к физике. Он закончил ее, заявив во всеуслышание о своем кредо реалиста – откровенном отрицании утверждений Бора, что физика имеет отношение не к природе как таковой, а только к тому, “что мы можем сказать о природе”. Услышав такое Юм, Мах, да, возможно, и сам Эйнштейн, когда был моложе, подняли бы в удивлении брови. Но теперь он провозглашал: “Вера во внешний мир, не зависящий от воспринимающего его субъекта, является основой всех естественных наук”37.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
СПОР
СПОР А пропал Винце вполне обдуманно, точь-в-точь так, как было у него заранее намечено.Однажды семиклассники писали сочинение «Кем я хочу быть». Пол-урока Винце грыз ручку и ни одного словечка не накалякал. Нет, не потому, что не знал своего настоящего призвания. К тому
КНИГА «ГОДЫ И КАМНИ» (1927–1935) Париж, 1936
КНИГА «ГОДЫ И КАМНИ» (1927–1935) Париж, 1936 жене моей Ирине Бек-Софиевой-Кнорринг «…Но никогда любить не перестану Тебя, стихи и молодость мою…» Ирина Кнорринг «Мой сын, иль внук, быть может, правнук…» Мой сын, иль внук, быть может, правнук, Должно быть, сохранит в глуши
Политический аспект биографии Пастернака. 1920–1930-е годы (На материале новейших документов)
Политический аспект биографии Пастернака. 1920–1930-е годы (На материале новейших документов) В последние годы стали известны многочисленные материалы 1920– 1960-х годов, документирующие политическую картину эпохи, механизмы взаимодействия партии и государства с
Сольвеевский конгресс 1911 года
Сольвеевский конгресс 1911 года Сольве – бельгийский химик и промышленник – сколотил состояние на том, что изобрел способ получения соды. Он стремился найти своим деньгам какое-нибудь необычное, но полезное применение. Из-за этого, а также потому, что у него имелись
Спор
Спор Сколько нынче ни читаю мемуаров, правды о том коротком периоде с 1987-го по 1991-й — ни у кого. Одни по лукавству, другие по неготовности к рефлексии комкают, «зажевывают» то состояние духовной смуты, каковой практически не миновал никто, поскольку все внезапно оказались
1930-Е ГОДЫ
1930-Е ГОДЫ После смерти А.И.Томашевского, участника перелёта Москва-Пекин, я стал шеф-пилотом-испытателем А.Н.Туполева. Это - человек солидный, вникающий до конца в любое слово лётчика. И уж если он скажет своё обычное резонное «Спукойно», то это значит, что с его стороны
Часть II 1927–1931 годы
Часть II 1927–1931 годы К началу 1927 года я окончательно решила, что, кроме театра, у меня другой дороги нет. В любом качестве — но в театре!К тому времени гениальное творение Станиславского — опера «Евгений Онегин» уже была перенесена на сцену нынешнего театра имени
Великий князь Московский ИВАН III Васильевич Великий 1440–1505
Великий князь Московский ИВАН III Васильевич Великий 1440–1505 Сын Василия Темного и Марии Ярославны. Родился 22 января 1440 года.Вступил на Московский великокняжеский стол после смерти отца 27 марта 1462 года по его завещанию. Николай Карамзин писал, что с этого времени «история
IV. Организация производства винтовки (1891–1897 годы). Последние годы жизни (1897–1902 годы)
IV. Организация производства винтовки (1891–1897 годы). Последние годы жизни (1897–1902 годы) Создав русскую трёхлинейную винтовку, Мосин немедленно приступил к организации её производства. Он был не только конструктором, но и широко образованным инженером-технологом, за долгие
Глава 7 1927–1930
Глава 7 1927–1930 «Нос» — создание и сценическая судьба оперы Соната для фортепиано, «Афоризмы» и Вторая симфония стали для Шостаковича областью поисков, проб и экспериментов. Однако его амбиции простирались значительно дальше. Он хотел создать индивидуальный современный
Глава 4 1929–1930 годы. Приобщение к Арктике
Глава 4 1929–1930 годы. Приобщение к Арктике …С южных гор до северных морей… Из советской песни Здесь! — сказал один и третий: — Здесь! Здесь! Каких еще искать нам мест? Н. Тихонов Свои ближайшие намерения на лето 1929 года позднее сам Отто Юльевич описал так: «Собирался в этом
Приложение 2 В. Светозаров РУССКАЯ ГИМНАЗИЯ В МОРАВСКОЙ ТРЖЕБОВЕ 1920 – 1930 ГОДЫ ЮБИЛЕЙНЫЙ ИСТОРИЧЕСКИЙ ОЧЕРК
Приложение 2 В. Светозаров РУССКАЯ ГИМНАЗИЯ В МОРАВСКОЙ ТРЖЕБОВЕ 1920 – 1930 ГОДЫ ЮБИЛЕЙНЫЙ ИСТОРИЧЕСКИЙ ОЧЕРК Истинную родину мы носим в нашем сердце, и никто не сможет ее оттуда вырвать. Коллар Любовь к отечеству и вера – это все наше богатство, если и это потеряем, то жизнь
1930-е — 1940-е годы
1930-е — 1940-е годы 1930 годРабота над «Онегиным». Ученые разговоры. Симонов монастырь. Весна. Воробьевы горы. Новодевичий м-рь. Пешком до Арбата. Первое звуковое кино. Грели руки в моей хомяковой шубе. Выставки. Первые ласточки сквозь руки на Сретенском бульваре. Лавочка в
Часть третья СОЛНЦЕВОРОТ 1927–1930
Часть третья СОЛНЦЕВОРОТ 1927–1930 1. Большая отрада, что я не писатель Весной Андреев поехал в Ленинград. Там он чаще всего останавливался в бывшей квартире отца на Мойке. На нее выходили длинные окна кабинета, а из спальни виделось Марсово поле, а дальше, за деревьями, можно