Аэроплан
Аэроплан
Название хорошо известно всем. Аэропланами называются летательные машины, которые быстро вытеснили управляемые аэростаты и которые теперь являются и, вероятно, останутся в будущем самым главным типом приборов для передвижения по воздуху. В будущем, конечно, можно ожидать еще многих усовершенствований, но в общем, наверное, аэропланы останутся схожими с нынешними, так же как и современный пароход напоминает строившиеся 30-50 лет тому назад. С устройством и действием аэроплана надлежит ознакомиться теперь подробнее. На страницах этой книги было указано, как можно с помощью двух разных способов, машущих крыльев (орнитоптера) или воздушного винта (геликоптера) заставить воздух давить снизу на поверхность машины. При достаточной силе такое давление может поднять весь прибор на воздух. Но есть и еще один способ, резко отличающийся от упомянутых.
Всем известен воздушный змей, который держится в воздухе без машущих или вертящихся поверхностей. Наконец, многие большие птицы иногда держатся в воздухе, совершенно не двигая крыльями. В южной части России нередко можно наблюдать аистов, парящих в воздухе, не двигая крыльями. Птицы в этом случае, а воздушный змей — всегда, держатся в воздухе, как аэропланы. Аэроплан значит по-русски — воздушная плоскость. Действие аэроплана — очень простое. Представим себе некоторый плоский, легкий предмет, например, лист картона, имеющий по одному аршину в длину и ширину. Расположим его горизонтально[ 30 ] и начнем двигать прямо в одном направлении так, чтобы не подниматься и не спускаться. Если вообразить себе такое движение происходящим над озером или морем, то это значило бы, что расстояние от нашей плоскости до воды все время остается одно и то же. Такое движение называют горизонтальным. При таких условиях наша пластинка будет двигаться точно своим ребром вперед и не будет испытывать давление воздуха вверх или вниз. Если мы теперь, продолжая двигать лист в прежнем направлении, немного приподнимем, например, на один вершок[ 31 ], передний край его, то вся пластинка начнет испытывать давление воздуха снизу. Если будем двигать нашу плоскость быстро, то давление воздуха снизу, т. е. подъемная сила пластины, может быть довольно велика. Так, например, с каждого квадратного аршина пластины, движущейся со скоростью 100 верст в час, можно получить целый пуд и даже более подъемной силы. А если плоскость будет сделана не в один, а в 100 или 300 квадратных аршин, то можно легко получить 100 и 300 пудов грузоподъемности. А плоскость достаточно прочная может быть легко сделана в 5, даже в 7 раз легче, чем то, что она при таких условиях поднимает, и значит, большая часть подъемной силы может быть потрачена на необходимые механизмы, людей, запасы и т. д. Ни, как было сказано, эта подъемная сила существует только тогда, кода плоскость быстро движется. Иначе говоря, необходимо, чтобы какой-нибудь механизм тащил эту плоскость по воздуху, и притом с большой силой, т. к. необходима значительная скорость. Таким механизмом является легкий мотор и воздушный винт. Двигатель с винтом толкают вперед по воздуху весь аэроплан с большой скоростью, а плоскости или крылья поддерживают всю машину со всем, что на ней находится. Таковы основы устройства аэроплана. Таким образом, мотор и воздушный винт являются необходимой частью, делающей возможным полет и поднятие на воздух нескольких десятков людей с помощью аэроплана. И тот же винт не мог пока поднять как следует даже одного человека непосредственно, т. е. как геликоптер. Причина этому следующая: как было сказано, плоскость надо двигать вперед с большой скоростью и для этого требуется значительная сила. Если некоторая плоскость в 1 кв. аршин движется с данной скоростью, например, 100 верст в час и дает грузоподъемность в 1 пуд, то ее требуется тянуть вперед с силой примерно 6 — 8 фунтов. Понятно, что всякий строитель аэроплана хотел, чтобы с тем же двигателем поднять побольше груза, и вот, стали изучать и пробовать, все ли плоскости несут одинаковый груз и требуют одинаковую силу для своего передвижения в воздухе, или можно улучшить и выгадать что-нибудь. В дальнейшем будет подробнее рассказано, как именно производились опыты над разными крыльями. Пока приведем лишь главные результаты. Было выяснено, что плоскости, у которых длина и ширина приблизительно одинаковы, действуют гораздо хуже, чем те, у которых длина в 5 — 8 раз больше ширины и которые притом движутся, встречая воздух своим длинным ребром. Оказалось также, что крылья выгнутые, в которых впадина приходится с нижней стороны, а выпуклость сверху, действуют гораздо лучше, чем плоские. Перепробовали всяких крыльев бесчисленное множество и под конец добились таких, которые на каждый пуд поднимаемого груза требовали лишь 2 фунта тяги для движения. Такое выгодное действие крыльев могло быть не при всяком их положении, а лишь при некоторых определенных углах встречи[ 32 ]. В этом свойстве крыльев и лежит причина того, что аэроплан поднимает грузы гораздо больше, чем геликоптер. В самом деле, небольшой винт на моторе в 100 лош. сил может дать около 15 пудов тяги, т. е. мог бы поднять геликоптер, весящий полностью не более 15 пудов. Те же винт и мотор с помощью аэропланных крыльев поднимут на воздух пудов 60, даже больше[ 33 ]. Казалось бы, что можно поднять и еще больше с помощью крыльев. Но надо помнить, что тяга винта идет не только на движение в воздухе крыльев; весь остов аппарата, двигатель, колеса, проволоки и т. д. — все это трется об воздух, и на это также расходуется часть работы двигателя. Чем больше разных частей (проволок и т. д.) находится снаружи, тем большая сила требуется, чтобы тянуть их вперед, тем больше тяги требуется для их движения. Вся работа, необходимая для их движения, также должна быть доставлена винтом. Значит, воздушный винт должен тянуть всю машину вперед с такой силой, какая получилась бы от сложения силы, потребной для движения крыльев, и силы, необходимой для движения всех остальных частей — проволок, колес, мотора, людей, если они сидят снаружи, и т. д. В действительности и этого было бы мало. Этой тяги было бы достаточно, чтобы лететь прямо. Чтобы подниматься на высоту, необходимо иметь больше. Чтобы бороться с ветром и воздушными волнами, тоже надо иметь больше силы. Наконец, нельзя заставлять мотор давать всегда самую большую силу, какую он только может дать. Гораздо лучше, если можно при спокойных условиях летать, расходуя лишь часть силы двигателя и лишь в случаях нужды пускать его на полный ход. Как было указано выше, можно легко сосчитать, сколько фунтов подъемной силы приходится на каждый квадратный аршин крыльев и сколько фунтов тяги требуется, чтобы двигать его вперед. Нетрудно рассчитать также, с какою силою надобно тянуть весь аппарат без крыльев, чтобы он двигался с необходимой скоростью. Наконец, зная, что мотор мощностью в 100 лош. сил с винтом тянет с силою 15 пудов[ 34 ], можно рассчитать, что на каждую лошадиную силу двигателя получается тяга в 6 фунтов. Зная это все, можно легко выяснить, что в определенном аэроплане, например, расходуется 25 лош. сил на крылья или, как говорят, на поддержание в воздухе, 25 лош. сил на трение проволок, колес и т. д., а 50 сил остается в запасе. Этот запас называется избытком мощности.
Для того чтобы аэроплан был удобным в пользовании, надежным и т. д., избыток мощности очень важен. Поэтому все строители стараются делать свои машины так, чтобы они обладали возможно большим запасом мощности. Таким образом, эта как бы лишняя мощность двигателя крайне полезна. Расход тяги на крылья также можно считать полезным, т. к. за счет этого аэроплан летает. А какова польза от расхода тяги на трение проволок, колес, корпуса аппарата и т. д.? Никакой пользы нет — один только вред. Поэтому про все эти части и говорят, что оно дают «вредное сопротивление». Понятно поэтому, что когда строят или, вернее, проектируют аэроплан, то стараются уменьшить его вредное сопротивление как только возможно, т. к. каждая лош. сила, которую удается сохранить, улучшает свойства аэроплана. Каким же образом это делается? Ведь без колес, без мотора и т. д. машину все же не выстроить, а значит, некоторое вредное сопротивление будет неизбежно. Но если и нельзя уничтожить вредное сопротивление совсем, то оказалось возможным его очень сильно уменьшить со времени постройки первых аэропланов. Достигнуто это было следующими способами. Старались уменьшить, сколько можно, количество наружных частей. Для этого помещали летчика за мотором или же часть проволок, а иногда и бензиновые баки помещали внутри крыльев и т. д. Кроме того, изучали, какую форму лучше придать предмету, чтобы он рассекал воздух как можно легче. При этом было выяснено много интересного. Оказалось, например, что легче всего движутся в воздухе предметы заостренные сзади и тупые впереди. Что вообще форма хвостовой части больше влияет, чем передней[ 35 ]. Выяснилось, например, что если на круглую палку или на стальную трубу надеть сзади наконечник, заостренный к концу, то работа для движения в воздухе такого предмета уменьшится в 2-3 раза. Оказалось, что если колесо на стальных спицах затянуть с обеих сторон полотном, то его сопротивление уменьшится в 1? — 2 раза.
Понятно, что изучить это все, включая и работу крыльев, о которой упоминалось выше, было делом нелегким. Требовалось много работы, внимания, дорогостоящие инструменты и т. д. А прежде всего надо было придумать, каким образом можно производить такие исследования, разработать и подчас даже изобрести необходимые приборы и инструменты. Лишь небольшую часть этого выполнили сами изобретатели летательных машин. Главная же часть этой работы была выполнена специалистами и учеными, задавшимися целью подготовить надежное основание для работы изобретателей. Учреждения, созданные для этой цели и снабженные необходимыми инструментами и приборами, назывались аэродинамическими институтами или лабораториями. Эти учреждения, имеющиеся теперь почти во всех больших государствах, оказали огромную помощь развитию и усовершенствованию дела постройки летательных машин.
Первая лаборатория такого рода была открыта в России за много лет до того, как такие учреждения появились в других странах. Это был Аэродинамический институт в селе Кучине вблизи Москвы. Он был основан Д. П. РЯБУШИНСКИМ. В его научных работах принимал участие профессор Московского Университета Николай Егорович ЖУКОВСКИЙ, бывший одним из первых ученых, проливших свет на эту до тех пор неведомую область техники и науки.
Работы лабораторий принесли делу создания летательных машин очень большую пользу. Лет 25 тому назад строители летательных машин должны были создавать главные части — крылья, корпус и т. д., руководясь своим чутьем, т. е. попросту говоря так, как им казалось. Иногда они поступали удивительно правильно; но сплошь и рядом делали ошибки, вызывавшие неуспех всей работы. Аэродинамические лаборатории дали строителям аэропланов множество очень важных сведений. Они показали, какие крылья действуют лучше, какие — хуже; какое сопротивление оказывают воздуху предметы разной формы, движущиеся в нем. Лабораторные исследования выяснили много интересных особенностей давления воздуха на движущиеся в нем тела. При испытании сопротивления воздуху предметов разной формы оказалось, что на малых скоростях лучшими были одни из них, а на больших скоростях — другие. Еще сложнее оказалось дело с крыльями. Для различных скоростей также оказались нужными разные формы крыльев. Кроме того, и при одинаковых скоростях крылья, работающие при больших углах встречи, должны быть несколько иными, чем встречающие поток воздуха под малым углом, т. е. идущие с едва приподнятым передним краем. Но, самое главное, лаборатории выяснили во всех этих случаях не только, какое крыло лучше, а какое — хуже, они выяснили точно, что крыло такого-то типа, при такой-то скорости и таком-то угле может поднять на каждый квадратный аршин столько-то груза и при этом его понадобится тянуть вперед с такой-то определенной силой. Над каждым крылом лаборатории производили много опытов и полученные результаты привели в такой вид, чтобы каждый строитель мог легко сосчитать, сколько груза поднимает выбранное им для своей машины крыло и сколько силы потребуется, чтобы двигать его вперед. Можно было также сосчитать все «вредное сопротивление» аппарата, высчитать, с какой силой будет тянуть винт при такой-то скорости полета и известной мощности двигателя. Иначе говоря, можно было, благодаря этим сведениям, делать расчет аэропланов, то есть делать машину сознательно, зная почему и для чего делается каждая ее часть, заранее зная с большой точностью, какими свойствами будет обладать построенный аппарат. Без этого строитель мог только угадывать, что получится из его машины, и при испытаниях получить иногда приятные, но гораздо чаще неприятные неожиданности.
Ознакомимся, каким образом производились эти опыты в лабораториях. Основой действия решительно всех летательных аппаратов, т. е. машин тяжелее воздуха, равно как и всех птиц и летающих насекомых, является давление воздуха на предмет, который в нем движется. Легко понять, что если предмет неподвижен, а воздух вокруг него движется, т. е. если на него дует ветер, то будет происходить то же самое. Значит, для производства наблюдений надо было заставить воздух двигаться мимо данного предмета с точно известной скоростью и измерять, с какою силой и в какую сторону воздух давит на этот предмет.
Поэтому безразлично, будем ли мы двигать воздух мимо неподвижного предмета, т. е. попросту дуть на него с помощью какого-нибудь насоса или вентилятора, или же мы будем в неподвижном воздухе двигать наш предмет. Важно только, чтобы скорость была точно известна и получаемые давления аккуратно измерялись. Большая часть испытаний производилась первым из указанных способов, т. е. помещали неподвижный предмет в струю воздуха — ветра, даваемую сильным вентилятором. Этим способом производились опыты и в лаборатории ЭЙФЕЛЯ[ 36 ].
Главную часть лаборатории Эйфеля составляет большая труба, как бы разрезанная примерно посередине. Две части этой трубы, имеющей около сажени в поперечнике в самом узком месте, соединены между собой так называемой «комнатой испытаний». В конце более длинной части трубы расположен огромный вентилятор, приводимый в движение электрическим мотором в 100 лош. сил. Вентилятор высасывает воздух из трубы, а следовательно, и из «комнаты испытаний», снабженной очень плотно затворяющимися дверями. Поэтому воздух устремляется широким и сильным потоком через большой раструб, насаженный на короткой части трубы, затем в виде струи сильного равномерного ветра проходит комнату испытаний, попадает в длинную часть трубы и вентилятором выгоняется прочь. Опытами было выяснено, что лучше несколько удалять вентилятор от места испытаний и, во всяком случае, не пользоваться струей ветра, идущего прямо от него. Такая струя не имеет одинаковой во всех частях скорости и всегда несколько «закручивается». А в комнате испытаний воздух проходит потоком достаточно равномерным, чтобы в нем можно было производить измерения. Для большей части испытаний воздух в лаборатории Эйфеля заставляли двигаться со скоростью около 35 и около 70 верст в час. А зная, с какою силой воздух давит на данный предмет при одной скорости, можно было легко вычислить давление и для всякой другой скорости[ 37 ].
При лабораторных испытаниях крыльев, корпуса и некоторых других крупных частей аэроплана обычно исследовали не само крыло, а небольшую модель его. Мелкие части — проволока, стальные трубы, стойки и т. д. испытывались в действительную величину. Испытываемая часть помещалась на конце особой палочки в самой середине струи ветра в комнате испытаний. Другой конец палочки, находившийся вне струи ветра, был соединен с особыми весами, позволявшими точно измерить силу давления ветра на предмет, закрепленный на конце палочки. Находящийся рядом наблюдатель должен был измерять давление и записывать результаты.
Таким образом было испытано огромное множество моделей различной формы и вида, изображавших как целые аэропланы, так и отдельные их части. Новые формы крыльев, частей и т. д. придумывались как руководителями лабораторий, так и отдельными частными лицами. В таких случаях лаборатория Эйфеля делала испытания бесплатно, но оставляла за собой право описать в своих справочниках модель и даваемые ею результаты, чтобы не один человек, а все сообща пользовались получаемыми научными сведениями, и все дело воздухоплавания развивалось таким образом успешнее и быстрее.
Понятно, что множество интересных моделей было придумано и доставлено изобретателями летательных машин. В большинстве случаев они просто добивались получения возможно лучшего крыла, винта и т. д. для своей машины, оставляя часто в стороне вопрос о том, почему именно такое крыло действует лучше, что именно происходит в воздухе, когда в нем работает винт, и т. д. Но для надежного разрешения связанных с этим делом вопросов надо было разъяснить полностью, что именно, как и почему происходит в воздухе с данным крылом, винтом или иной частью аэроплана. Иначе говоря, надо было создать науку, разъясняющую связанные с летанием по воздуху вопросы. Создать науку, т. е. накопить достаточное число точных знаний и сведений, расположить их в правильном порядке и объединить их общими рассуждениями, делающими понятными вопросы, относящиеся к данной науке, — все это является делом очень большим и нелегким, и очень важным. С конца прошлого столетия за это дело принялись многие ученые почти во всех странах. Выдающееся значение имела работа русских ученых. Выше приводилось уже имя профессора Жуковского; кроме того, из среды ученых, главным образом Петрограда и Москвы, выделился ряд серьезных работников, посвятивших свои дарования новой науке. Профессором Петроградского политехнического института БОТЕЗАТОМ было сделано много интересных и ценных работ, в их числе — исследование работы воздушных винтов. Много сделали проф. Петроградского политехнического института Ван дер ФЛИТ, инженеры СЛЕСАРЕВ, РЫНИН, военные инженеры НАЙДЕНОВ, УТЕШЕВ и многие другие. Эти лица организовали в России теоретическое обучение будущих летчиков и интересовавшихся делом студентов технических учебных заведений. А своими научными трудами и открытиями русские ученые сделали ценный вклад в мировую авиационную науку и заслужили России почетную известность.