Глава I

Глава I

Открытия в физике и химии, предшествовавшие изобретению светописи. – Камера-обскура в ее первоначальном и нынешнем видах. – Химические вещества, подчиняющиеся в различной степени влиянию световых лучей, и их взаимодействие

Правило, по которому ни одно из величайших изобретений и открытий в области прикладных знаний не появляется внезапно, уже довольно давно сделалось общим местом. Всем великим открытиям, принесшим славу их творцам и огромную пользу человечеству, предшествовало постепенное накопление научных фактов, пока не наступал момент, позволявший гениальному уму сделать из накопленного запаса сведений блестящий вывод.

Светопись, разумеется, подчиняется тому же неуклонному закону, хотя она и не имела таких непосредственных предшественников, каким, например, было для книгопечатания тиснение при помощи досок с вырезанным на них текстом. Тем не менее только известные успехи физики, и в особенности химии, твердо ставшей на ноги лишь в первой четверти XIX столетия, сделали возможным ее рождение и современное усовершенствование.

На первом месте здесь стоит устройство физического прибора, давшего возможность получить изображение внешних предметов, отличающееся такой точностью, какая явно недостижима для руки и самого острого зрения рисовальщика.

Прибор этот был впервые сделан в XVI столетии итальянским физиком Джованни Баптиста Порта.

Уже Леонардо да Винчи заметил, что если в ставне окна темной комнаты сделать небольшое отверстие, то на противоположной стене появляется изображение внешних предметов, увеличенное или уменьшенное, в зависимости от расстояния.

Порта убедился, что отверстие в ставне может быть любой величины, если только в него вставить стекло, называемое чечевицей.

Камера-обскура в первоначальном виде состояла из медной оправы, поддерживаемой тремя ножками; внутри помещалось плоское зеркало (призма) и собирательное стекло (так называемая чечевица). Лучи от предмета, упавшие на зеркало, или призму, дают в нем изображение, затем преломляются в собирательном стекле и составляют новое изображение, которое принимается на бумагу, помещенную на столике, движущемся вертикально и расположенном между ножками прибора.

Прибор окружен занавесом из плотного сукна для полной световой изоляции. Изображение предмета получается уменьшенное, но сохраняющее все его цветовые оттенки и тончайшие очертания.

Такой прибор мог быть, скорее, предметом любопытства, чем какого-либо практического применения. Впрочем, он служил в том же XVI столетии живописцу Каллио для воспроизведения копий с картин. Без сомнения, при виде изображения предметов, столь изумительно точно воспроизведенных световыми лучами, у многих возникало желание удержать это волшебное зрелище на бумаге. Может быть, такие попытки и делались тогда же, т. е. в конце XVI века, но оказались, видимо, бесплодными и поэтому остались для нас неизвестны.

Обыкновенная камера-обскура с объективом

Позднее Порта изготовил прибор несколько иного рода, основной принцип которого сохранился до настоящего времени. В деревянный ящик произвольной величины, но почти всегда продолговатый, вделана медная труба, содержащая собирающее стекло, носящее название объектива. Внутри этого «внешнего» ящика движется взад и вперед другой, меньшей величины, заднюю стенку которого составляет матовое стекло. На нем и получается изображение фотографируемого предмета в перевернутом виде. Впереди матового стекла находится подвижная перегородка, при задвигании или опускании которой изображение на стекле исчезает. Весь прибор устанавливается на штативе, который устроен так, что камеру можно поворачивать во все стороны, желая направить объектив на избранный для получения изображения предмет.

Заметим, что принципиальное устройство этого прибора представляет поразительную аналогию с анатомическим строением глаза! Не это ли привело в прошлом к разработке идеи камеры-обскуры? В сходстве обоих оптических аппаратов, естественного и искусственного, убеждает следующий опыт.

Продольный разрез обыкновенной камеры-обскуры

Если зрачок тщательно отпрепарированного глаза крупного животного обратить на ярко освещенный предмет, то на задней стенке глазного яблока появится его точное изображение, как в камере-обскуре. Опыт удается особенно хорошо, если производится в комнате с окном, закрытым ставнею, в которой просверлено небольшое отверстие.

Описанная нами камера-обскура, употребляемая для светописи, имеет и другой вариант устройства корпуса, предложенный французским оптиком Дерожи. Вместо двигающихся один в другом ящиков корпус этой камеры-обскуры устроен наподобие гармони или раздувательных мехов. Такой корпус имеет с одной стороны доску, в которую вставлена трубка объектива, а с другой – раму с матовым стеклом. Корпус этот движется взад и вперед по рейкам и в случае надобности может быть укреплен неподвижно при помощи особых винтов.

Самую существенную для светописи часть камеры-обскуры составляет объектив. Вначале объектив состоял из двояковыпуклой чечевицы. Подобный объектив имел значительные недостатки, называемые в физике сферической и хроматической аберрацией.

Камера-обскура с раздвижным мехом

Простая чечевица не может соединять в одном фокусе все световые лучи, падающие на нее от освещенного предмета: лучи, проходящие через края чечевицы, пересекаются дальше, нежели лучи, проходящие через ее центр. Или говоря иначе, «фокусы центральных и периферических (крайних) лучей не совпадают друг с другом». Расстояние между этими фокусами называется сферической аберрацией по длине. Из этого следует, что если мы помещаем матовое стекло камеры в центральном фокусе, то сноп периферических лучей сходится в фокусе позади стекла, давая на его поверхности небольшой кружок, радиус которого есть сферическая аберрация в ширину. При одинаковой кривизне поверхности чечевицы эта аберрация тем значительнее, чем более ее диаметр или так называемое отверстие.

Закрытое кресло – камера-обскура. 1711 год

Из предыдущего ясно, что при съемке предмета каждая точка последнего соответствует на изображении не точке ее, но небольшому кружку и освещение таких кружков уменьшается от центра к окружности, а размеры их различны, в зависимости от величины отверстия чечевицы. Чем эти кружки меньше, тем и изображение яснее; отсюда пошло применение к объективам диафрагм или дисков, имеющих в середине круглое отверстие и приставляемых к чечевице.

Диафрагма задерживает периферические лучи и таким образом уменьшает аберрацию. Но давая более ясное изображение, она ослабляет освещение, что замедляет светописный снимок. Кроме того, диафрагма несколько искажает очертания предмета – так называемое явление растягивания. В результате стороны квадрата являются на изображении выпуклыми, когда диафрагма помещается впереди чечевицы и, наоборот, вогнутыми, когда она стоит позади ее.

Это явление старались устранить, помещая диафрагму между двумя совершенно одинаковыми чечевицами и таким образом нейтрализуя оба вида растяжения изображения.

Впоследствии вместо снабжения объективов диафрагмами стали прибегать к устройству так называемых апланатов, с целью устранения сферической аберрации. Но немыслимо создать чечевицу, кривизна которой удовлетворяла бы данному требованию. Поэтому со времени французского инженера-оптика Шарля Шевалье стали комбинировать чечевицы различных радиусов, чтобы получить одну апланатическую. Эти различные чечевицы или склеивают между собой или помещают на определенном расстоянии одна от другой.

Сегодня известны и используются: ортоскопический объектив Петяваля в Вене; многофокусный объектив Дерожи; триплет Дальмейера, представляющий видоизменение предыдущего; апланат Штейнгеля; эврискон Фогтлендера и другие. Все эти апланаты более или менее удачно разрешают задачу устранения аберрации.

Недостаток апланатов заключается в том, что они не дают достаточной глубины фокуса. Этим термином называют пространство между центральным и периферическим фокусами световых лучей, проходящих через чечевицу.

Глубина фокуса особенно важна при снимках объемных предметов и позволяет добиваться для всех одинаковой ясности изображения. Апланаты же, давая вполне ясное изображение одной плоскости, для других дают освещение не одинаковой силы.

Из всего сказанного очевидно, что при выборе объектива нужно обращать внимание на очень многие условия, тем более что некоторые апланаты, как мы знаем, имеют свойство искажать изображение, производя вышеупомянутые растяжения. Поэтому объективы различаются по их назначению: для портретов, ландшафтов, уличных зданий и монументов, смотря по величине полей и в зависимости от требуемой большей или меньшей скорости снимка.

Важно учитывать также и явление хроматической аберрации. Различные лучи призматического спектра преломляются неодинаково. Если предмет освещен красным светом, то его изображение появляется на большем расстоянии от чечевицы, чем при освещении того же предмета фиолетовым цветом. Поэтому предмет, освещенный белым светом, дает собственно не одно изображение, но столько, сколько имеется различных световых лучей спектра. Этим объясняется, что изображение имеет то розоватый, то фиолетовый оттенок, в зависимости от расстояния между экраном и чечевицей.

Хроматическую аберрацию стараются устранить ахроматизацией стекол, соединяя две различные чечевицы, собирательную из кронгласа и рассеивающую из флинтгласа, чтобы привести фокусы красных и фиолетовых лучей к фокусу желтых, наиболее ярких. Достигнутый таким образом ахроматизм является достаточным для зрительных труб и микроскопа, но неудовлетворительным для светописного аппарата.

Лучи, обладающие наиболее сильным химическим действием, отличаются от тех, что сильнее всего действуют на зрение. Иначе сказать, фокусы осветительных и химических лучей не совпадают между собою. Поэтому светописные объективы должны быть устроены так, чтобы эти фокусы совпадали, иначе ясное и отчетливое изображение, полученное на полированном стекле, окажется неясным на светочувствительной поверхности; надлежащее сочетание чечевиц позволяет устранить и этот недостаток.

Труба, в которую заключен объектив, с наружной стороны имеет легко закрывающуюся крышку, называемую обтуратором.

Приступая к съемке изображения, помещают его в фокусе, глядя на матовое стекло и по мере надобности передвигая объектив при помощи особо приспособленного для этой цели винта. Затем на место матового стекла помещают так называемое негативное шасси, т. е. рамку, заключающую в себе приготовленную светочувствительную пластинку, и открывают крышку объектива. Когда время пребывания шасси в камере признается достаточным, крышку опять надевают на трубу объектива, а шасси вынимают и уносят в лабораторию. Для ускорения этой процедуры необходимо, чтобы механизм открывания крышек срабатывал без задержек, автоматически. Таковы пневматические обтураторы.

О несомненном и значительном влиянии света на многие вещества (причем последние подвергаются очевидным изменениям в их наружном виде) человечество знало уже в самые отдаленные времена. Древним было известно, например, что краски написанных маслом картин изменяются и в конце концов обесцвечиваются при действии на них продолжительного света. Было замечено, что такому же обесцвечиванию солнцем подвергался асфальт, плавающий на поверхности Мертвого моря, а также различные смолы, употреблявшиеся в Египте для бальзамирования трупов.

Алхимикам средних веков влияние света на различные химические вещества было известно лучше, чем древним, и такие свойства света возбуждали в них надежды на открытие философского камня, способного превращать в золото все металлы.

Так считал и алхимик Фабрициус, открывший на основе разысканий Араго хлористое серебро, названное им роговою луною. Тогда же было замечено, что вещество это чернеет под влиянием света и на почерневших местах появляется металлическое серебро, т. е. что свет обладает способностью восстановления металла из его солей. Позднее стало известно, что это восстанавливающее свойство света обнаруживается не на одной хлористой, но и на всех солях серебра – бромистой, йодистой и т. д. Соли других металлов также подвергаются восстанавливающей силе солнца, но это явление требует гораздо большего времени, чем то, которое необходимо для солей серебра. Так, двухромовокислый калий обращается при действии света в окись хрома; то же происходит с азотнокислым ураном.

Влияние света на органические вещества обладает противоположным свойством: свет облегчает соединение органического вещества с кислородом или такими телами, как хлор, бром и йод. Гваяковая смола под действием световых лучей соединяется с кислородом воздуха и дает синий цвет.

Асфальт под влиянием света окисляется, бледнеет и становится нерастворимым.

Из того, что соли на свету теряют содержащиеся в них кислород, хлор, бром или йод, а органические вещества под тем же влиянием стремятся к поглощению последних, следует, что оба эти явления должны происходить гораздо быстрее, когда протекают одновременно, т. е. когда соли приходят в непосредственное соприкосновение с органическими веществами. Поэтому если нанести раствор азотнокислого серебра с одной стороны на фарфоровую доску, а с другой – на листок бумаги, то разложение серебряной соли на бумаге обнаружится гораздо быстрее, чем на доске. Двухромовокислый калий изменяется под действием световых лучей с чрезвычайной медленностью; но если его смешать с желатином, сахаром, крахмалом или белком, то соль раскисляется очень быстро, – при этом вышеназванные органические вещества становятся твердыми и нерастворимыми. Можно бы привести и еще целый ряд подобных же примеров.

Необходимо обратить внимание на следующее. Нет надобности подвергать соль и органическое вещество влиянию света одновременно. Так, смесь йодистого серебра и дубильной кислоты быстро подвергается действию света, и серебро восстанавливается. Но возьмем кусок бумаги, напитанной йодистым серебром, и выставим его на свет; если действие последнего будет непродолжительным, мы не заметим в бумаге никакого изменения. Но если погрузим этот кусок бумаги в раствор дубильной кислоты, она тотчас же потемнеет, так как серебро восстановится. Это явление объясняют тем, что хотя воздействие света на йодистое серебро и произошло, но проявление этого воздействия стало возможным лишь при помощи дубильной кислоты. Этот принцип лег в основу фотографии: он показывает, что вещество, подвергшееся влиянию света, сохраняет в себе полученное впечатление, подтверждением чего служит следующий опыт. Берут жестяной цилиндр, открытый с одного конца, и этот открытый конец подвергают действию солнечных лучей. Спустя несколько минут цилиндр уносят в темную комнату и на отверстие кладут кусок хлоросеребряной бумаги. Через некоторое время на нем появляется темное круглое пятно, соответствующее отверстию цилиндра. Серебро восстанавливается, как будто кусок бумаги был подвергнут прямому влиянию световых лучей.

Мы видим из всего сказанного, что о влиянии света на различные вещества в какой-то мере было известно прежде. Успехи химии в последней четверти XVIII и первой четверти XIX столетий сделали возможными новые открытия.

Возникает вопрос: была ли известна возможность удержания изображений, даваемых камерой-обскурой, или, иными словами, известна ли была фотография до Дагера и Ньепса? Имеются неясные сведения, что были люди, подходившие очень близко к этому открытию. Но они унесли в могилу свои знания, если только обладали ими.

В книге под заглавием «La Gypnantie»,[1] изданной в 1760 году в Шербуре полубезумным алхимиком Тифэном де ля Рошем, среди разного бреда и псевдоученой чепухи имеется следующее место: во время бури Тифэн был перенесен во дворец каких-то элементарных гениев, и их начальник посвятил автора в тайны занятий своих подчиненных. «Ты знаешь, – сказал он Тифэну, – что лучи света при известном преломлении дают изображение на воде, стекле, сетчатой оболочке глаза и т. д. Мои элементарные гении старались удержать эти мимолетные изображения: они придумали состав, при помощи которого картина может быть запечатлена в мгновение ока. Мы берем для своих картин из самого чистого источника, именно из лучей света, те краски, которые ваши художники получают из различных материалов и которые неизбежно изменяются. Точность рисунка, выражение, тончайшие оттенки красок, – все это мы поручаем природе, которая всегда безошибочно рисует на нашем полотне картины, поражающие зрение, осязание и все чувства вместе». Читая эти строки, невольно думаешь, не кроется ли в этом бреде действительное знакомство со светописью? Но так как Тифэн не оставил ни описания открытия, подобного изобретению Ньепса и Дагера, ни каких-либо снимков, то думать, что его сонное видение явилось плодом знакомства с книгою «Livre de m?taux», изданною в 1566 году алхимиком Фабрициусом, который пишет, что изображение, полученное с помощью чечевицы на поверхности рогового серебра (хлористого серебра), оставляет черные следы в сильно освещенных местах и менее темные – в менее освещенных. На парижской выставке 1819 года некто Гонор (Gonord) показывал гравюры и портреты (между прочими – короля Людовика XVIII), которые он изготавливал очень быстро, не объяснив, однако, в чем состоял его способ. Гонор этот умер в крайней бедности в 1822 году. Наконец, известный инженер-оптик Шарль Шевалье в своей книге «Guide de photographe»[2] рассказывает, ручаясь за достоверность, целую историю, не лишенную некоторого мелодраматического характера. В конце 1825 года, когда Шарль Шевалье был еще только помощником своего отца, тоже известного оптика, в магазин явился молодой человек, чрезвычайно бедно одетый, с лицом бледным и, по-видимому, изнуренным всевозможными лишениями. Незнакомец стал расспрашивать Шарля Шевалье о цене камер-обскур, жаловался, что не имеет средств приобрести усовершенствованный тогда аппарат с так называемой призмою-мениском и наконец объявил, что он нашел средство удерживать изображения, производимые камерой-обскурой. Шевалье тогда уже знал об изысканиях в этом направлении Тальбота в Англии и Дагера и Ньепса во Франции и считал все эти попытки бесплодными. Но оптик был поражен, когда молодой человек подал ему позитивы, отпечатанные на бумаге. Он выразил юноше свое восхищение, на что молодой человек сказал: «Так как у меня нет средств приобрести для моих опытов усовершенствованный аппарат, то я передам вам изобретенный мною состав, а вы проделайте с ним несколько опытов». Спустя несколько дней незнакомец принес флакон красно-бурой жидкости, которую позднее Шевалье считал крепкой настойкой йода, и объяснил ему, как следует с этою жидкостью поступать. Шарль Шевалье сделал несколько опытов, но по неосторожности производил их при дневном свете и, обескураженный полнейшим неуспехом, решил ждать возвращения неизвестного молодого человека, но тот больше не появился и о нем никто ничего не знал. Шевалье никогда не видел его больше и помнил только, что он жил где-то на rue de Вас.

«Позднее, – говорит Шевалье, рассказав эту таинственную историю, – я не мог вспомнить этого приключения без некоторых упреков совести. Когда незнакомец высказал мне сожаление о том, что он не имеет средств для покупки хорошего аппарата, я должен был облегчить ему это приобретение в интересах науки; но, не отрицая моей несомненной вины, я могу привести в свое оправдание, что тогда я еще не имел права распоряжаться имуществом магазина».

Что стало с этим неизвестным изобретателем? Бернар Палисси говорил: «Бедность умерщвляет гений». Погиб ли он на койке больницы, окончил ли дни свои в Бисетре (дом умалишенных в Париже) или, махнув рукою на мечты, сделался почтенным буржуа-лавочником? Неизвестно, какой из этих, равно обидных для гения, исходов стал участью таинственного первого изобретателя фотографии.

Кроме всех этих неясных намеков на то, что светопись могла быть, по крайней мере отчасти, известна до Дагера и Ньепса, мы знаем, что некоторые ученые конца XVIII и начала XIX веков очень близко подходили к ее открытию и получали световые изображения на светочувствительных поверхностях, но ни одному не удалось получить позитивное изображение и закрепить его.

В 1770 году шведский химик Шееле открыл, что если на бумагу, смоченную хлористым серебром, положить гравюру и выставить все это на солнечный свет, то на бумаге получается точная копия гравюры с той особенностью, что светлые места на серебре выходят черными, а темные – белыми. Но если бумага после этого остается на свету, то она чернеет вся сплошь и рисунок исчезает.

В 1780 году довольно известный французский физик Шарль, славившийся доходчивым и красноречивым преподаванием и любивший удивлять свою многочисленную аудиторию, воссоздавал при помощи света силуэты своих слушателей на бумаге и на папке; при дальнейшем действии света эти силуэты сливались с потемневшим фоном.

Шарль умер, не открыв своего секрета и оставив в воспоминание науке, кроме лекторского красноречия, свое воздушное путешествие на первом водородном аэростате и несколько силуэтов, в которых, заметив фиолетовую окраску, некоторые ученые готовы были подозревать присутствие йода – предположение невероятное, так как дело происходило ранее 1812 года, т. е. до открытия этого металлоида заводчиком Куртуа.

В 1802 году английский ученый Виджворт получил результаты, подобные тем, которых добился химик Шееле, но уже не с хлористым, а с азотнокислым серебром. Знаменитый сэр Хэмфри Дэви описал открытие Виджворта в бюллетенях британского Королевского общества:

«Белая бумага и белая кожа, смоченные раствором азотнокислого серебра, не изменяют своего цвета, будучи сохраняемы в темноте; но выставленные на дневной свет, они быстро делаются сперва серыми, затем бурыми и наконец совсем черными. Это явление привело к возможности легко снимать копии с рисунков на стекле, а также получать силуэты и профили теней. Если белую поверхность, смоченную раствором азотнокислого серебра, поместить позади разрисованного стекла и выставить на свет, то лучи его производят на белой поверхности темные очертания, которые темнее всего там, где свет действовал сильнее, и почти незаметны на местах, бывших слабо или вовсе не освещенными. Когда на экран, смоченный раствором ляписа, бросают тень какой-нибудь фигуры, тень остается белою, а все подвергшееся действию света быстро темнеет. Получив таким путем рисунок, необходимо держать его в темноте, ибо достаточно нескольких минут действия света, чтоб вместо рисунка получилось сплошное темное пятно, занимающее всю поверхность взятого для опыта куска бумаги или кожи.

Тщетно старались воспрепятствовать этому. Покрывание поверхности лаком не препятствует серебряной соли темнеть под влиянием световых лучей, а повторные, весьма обильные промывания куска бумаги или кожи не могут удалить из вещества всего количества впитавшейся в него соли, и потому поверхность неизбежно темнеет.

Способ этот может найти довольно интересное практическое применение: можно им воспользоваться для снимков с таких предметов, которые частью прозрачны, а частью – нет. Так получаются чрезвычайно отчетливые и точные снимки с высушенных тонких листьев растений и крыльев насекомых. Пробовали также, но без успеха, снимать пейзажи, даваемые камерой-обскурой: здесь свет оказался слишком слабым для воздействия на раствор азотнокислого серебра. Мистер Виджворт продолжает свои исследования этого интересного явления».

Мы изложили таким образом, быть может, даже с подробностью, которую читатель признает излишнею и утомительною, все, что предшествовало открытию Дагера и Ньепса.

Нет сомнения, что были люди, очень и очень близко подходившие к изобретению светописи, но никому из них не удалось, так сказать, схватить самое существенное, а именно фиксировать (укрепить) даваемые светом мимолетные изображения. Кроме того, никто из тех изыскателей не оставил подробного описания своего открытия.

Поэтому предшественники Дагера и Ньепса не могут изменить ни славы этих истинных изобретателей светописи, ни их права на признательность потомства, ежедневно убеждающегося в огромном значении их великого открытия для цивилизации.