Витагенные эфирные эманации
Я стал свидетелем впечатляющего и необыкновенного явления благодаря своему генератору эфирных волн и собирался выяснить его истинное значение по отношению к токам, распространяющимся через землю… Это глубокое изучение столь сильно поглотило меня, что я стал забывать обо всем остальном, даже о своем подорванном здоровье. В конце концов, когда я оказался на грани срыва, природа приготовила мне… летаргический сон, постигший меня в результате слабого воздействия витагенных эманаций электрического эфира.
Н. Тесла. Воспоминания
При описании резонанса я часто применяю аналогии с винным бокалом и качелями. Бокал, разбитый нотой, взятой на скрипке, разлетается вдребезги потому, что вибрации воздуха, порождаемые скрипкой, оказались той же самой частоты, что и собственные вибрации бокала. Человек на качелях может весить двести фунтов, а слабый мальчик, раскачивающий его, может весить пятьдесят фунтов и толкать с силой не больше фунта. Но если он синхронно подстроит свои толчки под качание качелей, когда качели уходят от него, и будет добавлять по фунту усилий, ему скоро придется остановиться, чтобы не отправить качели в космос. Принцип не может отказать, просто здесь нужно прикладывать небольшую силу в нужный момент.
Н. Тесла. Лекции
Глобальный эфирный резонанс по Тесле.
Заканчивая свой очередной лекционный тур большой обзорной лекцией в Нью-Йоркском планетарии, Тесла демонстрировал небольшой стеклянный шар, внутри которого находился игольный электрод с крупной горошиной неизвестного материала. В сумеречном свете затемненной аудитории изобретатель подключал прибор к высокочастотному трансформатору собственной конструкции. В мгновение ока внутри загоралась красная точка, тут же превращаясь в микроскопическое солнце, еще через секунду взрывающееся искрами фейерверка. Вспыхивал свет, и Тесла объяснял, что горошина на игле электрода электростатически отталкивала находящиеся вокруг молекулы газа к стенкам шара, затем повторялось возвратно-поступательное движение и миллиарды миллиардов ударов раскаляли горошину добела, так что она мгновенно плавилась и испарялась в миниатюрном взрыве.
Макет одного из вариантов углеродно-игольчатой электронной лампы Теслы.
Электронная лампа Теслы.
Изобретатель подробно рассказывал о своих экспериментах с кристалликами алмазов, рубинов и двуокиси циркония. В конце концов он обнаружил, что карборунд не испаряется так быстро, как другие твердые материалы, образуя легкий налет на внутренней поверхности колбы, отсюда и возникло название — углеродно-игольчатая электронная лампа Теслы.
Лампа Теслы.
Энергия тепла раскаленной лампы передавалась молекулам небольшого количества газа в трубке, что вынуждало их становиться источником света, в 20 раз более яркого по отношению к потребляемой энергии, чем лампа накаливания Эдисона. Показывая свечение электрической ауры своего тела, Тесла пропускал через себя высокочастотный ток в сотни тысяч вольт, а для сравнения держал в руке свое удивительное творение — работающую модель раскаленного солнца. С ее помощью он иллюстрировал оригинальную теорию происхождения и распространения электричества космическими лучами.
Современный аналог электронных ламп Теслы.
«Солнце, — размышлял Тесла, — это раскаленное тело, несущее огромный заряд электричества и испускающее потоки мельчайших частиц, каждая из которых обладает гигантской энергией благодаря своей огромной скорости. Извергая потоки энергии в космос, солнце должно как-то деформировать эфирную оболочку Земли, заряжая ее всплесками электрической энергии».
Тесла был убежден, что весь космос наполнен этими частицами, постоянно бомбардирующими атмосферу и земную поверхность, а также все другие виды материи, точно так же как в его углеродно-игольчатой лампе, где самый твердый материал превращается в атомную пыль. И здесь изобретатель сделал еще одно открытие, намного опередившее свое время. Он предположил, что одним из проявлений бомбардировки нашей планеты порывами солнечного ветра высокоэнергетических частиц является северное сияние. Тесла стал разрабатывать электронные лампы в начале 1890-х годов, полностью ожидая, что они окажутся подходящими для обнаружения радиосигналов. Позднее он все свое время осваивал профессию стеклодува и изобрел тысячи вариантов ламп, которые использовал в радиоисследованиях и для получения света. Так, однажды он поместил длинную стеклянную трубку, частично вакуумированную, внутрь более длинной медной трубки с закрытым концом.
В трубке был сделан длинный узкий разрез, чтобы раскрыть стекло, находящееся внутри. Когда он подсоединил медь к клемме высокого напряжения, то обнаружил, что воздух во внутренней трубке ярко светится, хотя вроде бы не было никакого тока через коротко замкнутую внешнюю медную трубку. Казалось, что электричество протекало через стекло в результате индукции и проходило через воздух, находящийся под низким давлением, а не через металл по металлическому внешнему корпусу.
Таким образом изобретатель увидел способ передавать электрические импульсы любой частоты в газах.
«Если бы частота была достаточно высокой, — размышлял он, — тогда можно было бы сделать необычную систему распределения, которая, возможно, заинтересовала бы газовые компании: металлические трубки, наполненные газом, при этом металл был бы диэлектриком, а газ — проводником, снабжающим флуоресцентные лампы, может быть, даже еще не изобретенные устройства».
На самом деле то, что он описывал, было предшественником проводника для микроволновой передачи.
Это направление исследований привело Теслу к одной из его наиболее грандиозных концепций — «земному ночному свету», способу осветить всю Землю и окружающую ее атмосферу. Будто бы это была простая иллюминация. Он размышлял, что газы в атмосфере на большой высоте были в таком же состоянии, что и воздух в его лампах низкого давления, и поэтому он мог бы служить отличным проводником для высокочастотного тока. Эта концепция увлекала Теслу многие годы. Он видел в ней возможность обезопасить морские пути и аэропорты в ночное время суток или способ осветить все города, не используя уличных ламп. Надо было только передавать достаточно высокочастотный ток должным образом в высшие слои воздуха на высоту 35 000 футов или даже ниже. Когда Теслу спросили, как он предлагает передавать такие токи в верхние слои воздуха, тот просто ответил, что это не представляет никаких практических сложностей. У него было свойство никогда не раскрывать методов, пока не опробовал их на практике, и это было одной из идей, которую пришлось отложить из-за недостатка денег на исследования.
Журналисты продолжали задавать Тесле вопросы и высказывать догадки. Некоторые предполагали, что он собирается использовать одну из своих молекулярно-бомбардируемых трубок, чтобы спроецировать в атмосферу мощный луч ультрафиолетового излучения, ионизирующий воздух на больших расстояниях и превращающий его в хороший проводник электричества всех видов при высоком напряжении. Этот метод, теоретизировали они, создаст проводящий проход к любой желаемой высоте, через который Тесла сможет посылать высокочастотный ток. Позднее, когда его огромная (и злополучная) башня вещания на весь мир была построена на Лонг-Айленде, верхняя платформа была сконструирована так, чтобы вмещать набор ультрафиолетовых ламп. Их предназначение никогда не было раскрыто.
В другой раз Тесла говорил о плане использования как Земли, так и верхних слоев воздуха в качестве проводников электричества и слоя воздуха между ними в качестве диэлектрика. Такая комбинация образовала бы нечто вроде гигантского конденсатора, способа накапливания и разрядки электричества. Если бы на Земле было создано электромагнитное поле, то верхние слои воздуха зарядились бы за счет индукции. Земной шар превратился бы в лейденскую банку, заряжающуюся и разряжающуюся. Ток, текущий как в почве, так и в верхних слоях воздуха, создаст свечение в верхнем слое атмосферы, которое осветит мир. Был ли это тот способ, которым Тесла предлагал доставить ток в верхние слои воздуха? Мы не знаем.
Хотя история и не сохранила никаких записей его исследовательских методов, Тесла не раз подчеркивал, что не только обнаружил космические лучи, но и смог оценить их энергию в сотни миллионов электрон-вольт.
Один из первых элементов электрической колебательной системы — конденсатор лейденская банка.
Надо сказать, что научная общественность того времени отнеслась к идеям великого изобретателя весьма настороженно. Сегодня нам известно, что термоядерная реакция на Солнце вызывает рентгеновское, ультрафиолетовое и инфракрасное излучение, а также потоки радиоволн и корпускулярных солнечных частиц. Космические лучи, согласно современным представлениям, появляются в различной форме и являются результатом слияния, распада и столкновений высокоэнергетичных частиц. Они летят не только от Солнца, но и от звезд, в том числе новых или взрывающихся. Солнечные элементарные частицы, в основном электроны и протоны, приближаясь к Земле, захватываются электромагнитным полем Земли и образуют радиационные пояса. Солнечное излучение, как видимое, так и невидимое, определяет температуру поверхности планет. Северное сияние вызывается частицами солнечного ветра при их соударении с атомами верхних слоев атмосферы.
Антуан Анри Беккерель (1852–1908).
Спустя пять лет после лекции Теслы французский физик А. А. Беккерель открыл таинственные лучи, испускаемые ураном. Мария и Пьер Кюри подтвердили его открытие своими исследованиями радия и урана, атомы которых распадались самопроизвольно. Тесла ошибочно полагал, что космические лучи являются первичной причиной радиоактивности радия, тория и урана. Но он был абсолютно прав, предсказывая, что бомбардировка «космическими лучами», то есть субатомными частицами высокой энергии, может сделать другие вещества радиоактивными, как это было продемонстрировано Ирен и Фредериком Кюри в 1934 году.
Хотя научный мир времен Теслы не принял его теорию космических лучей, двое ученых, ставших впоследствии знаменитыми в этой области, безоговорочно признавали приоритет его исследований. Должно было пройти 30 лет, прежде чем Роберт Эндрюс Милликен повторно открыл космические лучи. Он считал, что они имеют электромагнитную природу наподобие гамма- и рентгеновского излучения, являясь скорее фотонами, а не заряженными частицами. При этом Милликен ссылался на гипотезу Теслы о «космических колебаниях электрического эфира», в котором, по мнению изобретателя, и распространялись электромагнитные волны. Это привело к одной из яростных дискуссий 1940-х годов между нобелевскими лауреатами Милликеном и Артуром Г. Комптоном, который считал, что космические лучи состоят из высокоскоростных корпускул солнечного и звездного вещества. При этом он также ссылался на модель Теслы, которую изобретатель демонстрировал на примере своей углеродно-игольчатой лампы. Впоследствии именно комплексная модель звездного ветра Теслы получила полное экспериментальное подтверждение.
Но и это были еще не все открытия, сделанные изобретателем с помощью многоэлектродных вакуумных баллонов.
С известной долей фантазии можно предположить, что на примере углеродной электронной лампы Тесла продемонстрировал один из принципов построения растрового электронного микроскопа. Лампа испускала наэлектризованные частицы, выстреливаемые по радиусам из крошечного «капельного электрода», у которого поддерживался высокий потенциал. При этом на вогнутой поверхности стеклянного шара эти частицы воспроизводили увеличенный фосфоресцирующий образ точечного участка электрода, из которого они вылетели. Получается, что единственным ограничением на увеличение, которого можно было бы достичь, являлся только внутренний радиус стеклянной колбы. Чем больше ее радиус, тем больше будет увеличение, а поскольку длина волны электронов неизмеримо меньше у фотонов видимого света, то и увеличение электронного микроскопа в миллионы раз превышает разрешающую способность самых сильных световых приборов. В принципе, с помощью электронного микроскопа можно воочию убедиться в реальности существования молекул и даже атомов, получив их четкие изображения.
Распад некроэфирной ауры плазмоида в высокочастотном поле электромагнитных вариаций.
Однажды в Будапеште, когда мне открылась концепция вращающегося магнитного поля, в одной вспышке сверхразумного восприятия я увидел всю Вселенную, созданную из симфонии переменных токов с созвучиями, исполняемыми на широчайшем диапазоне октав. Переменный ток промышленных частот был всего лишь простой нотой низшей октавы. На одной из высоких октав, с частотой в миллиарды циклов в секунду, были видны радужные переливы света…
Исследование всего диапазона электрических вибраций, лежащих между низкочастотными переменными токами и световыми волнами, неминуемо приведет нас к осознанию величественной космической симфонии колеблющегося электрического эфира.
Н. Тесла. Дневники.
Официально изобретение телевизора и электронного микроскопа приписывается нашему выдающемуся соотечественнику, эмигрировавшему, как и Тесла, в Америку, — Владимиру Зворыкину, получившему целый ряд американских патентов в 1939 году. И все же эффекты, происходившие в углеродной лампе Теслы, вполне могли служить прообразом функционирования подобных электронных приборов.
Эманация резонансной энергии эфирного тела.
Вот как строил их теорию сам изобретатель:
«Рассмотрим стационарный электрический заряд, покоящийся на поверхности равномерно струящейся субстанции мирового эфира. Вокруг себя он создает искажения впадины или возвышенности, в зависимости от знака, которые и воспринимаются как электростатическое поле, которое влияет на другие заряды. На одноименные заряды действует сила отталкивания, они как бы скатываются с возвышения, а противоположные — наоборот, попадают в воронку и притягиваются, причем все эти силы направлены строго по радиусам, идущим от исходного заряда, поскольку и „холмы“ и „впадины“ эфира строго центрально-симметричны. С расстоянием взаимное влияние зарядов слабеет, но не исчезает, поскольку упругая поверхность эфира охватывает весь сущий мир. Иначе говоря, любой заряд во всем своем бесконечном окружении создает радиальное силовое поле. Если в электрическом мировом эфире возникнет сгущение или разряжение вихрей, то покой заряда будет тут же нарушен, и он совершит какое-нибудь перемещение. Теперь силовые линии изгиба мнимой пленки эфирной поверхности будут расходиться из нового центра. Но электрическое поле, окружающее заряд, мгновенно перестроиться не может, и в отдалении изгибы эфирной поверхности еще долго будут указывать на первоначальное местоположение заряда. Так будет до тех пор, пока не подойдет волна перестройки эфирного рельефа, которая, скорее всего, распространяется со скоростью света. Это и есть электромагнитная волна, а ее скорость есть фундаментальное свойство пространства в нашей Вселенной. Конечно, это описание крайне упрощено и в нем есть существенные неточности, но оно позволяет наглядно представить, как зарождаются и распространяются силовые волны электрического эфира, которые некоторые называют электромагнитными колебаниями».
Релаксация ауры плазмоида.
Разумеется, многие мои слушатели уже заметили, что описанный процесс в строгом смысле не является волной, то есть распространяющимся периодическим колебательным процессом. Распространение у нас происходит без колебаний, поэтому усложним задачу и заставим силовое эфирное взаимодействие действовать попеременно, раскачивая заряд, как поплавок на водной глади. Тогда за первой перестройкой радиального электрического поля сразу последует вторая, восстанавливающая исходное положение, и если заряд будет колебаться регулярно, то по радиальным силовым линиям электрического поля во все стороны побегут самые настоящие волны напряженности электрического эфира.
Тут самое время вспомнить о законе электромагнитной индукции, который так широко используется в генераторах переменного тока и резонансных трансформаторах. Если представить, что продольные колебания эфирной среды соответствуют изменяющемуся электрическому полю, а поперечные — магнитному, то полное колебание даст нам электромагнитную волну. Можно, конечно, и дальше уточнять модель колебаний заряда в среде мирового электрического эфира, и если довести это дело до конца, мы как раз и получим уже упомянутые уравнения Максвелла. Но главное здесь — возможность независимого распространения электромагнитных волн от источника-антенны. Ведь волны электрической и магнитной составляющей мирового эфира хотя и возникают благодаря осцилляциям заряда, но распространяются вполне самостоятельно. Если даже убрать первоначальный источник, это никак не повлияет на ушедшую волну, которая дальше будет лететь совершенно независимо. Это позволяет нам рассматривать электромагнитные волны как самостоятельные физические явления наряду с зарядами, которые их порождают.
Н. Тесла. Лекции.
Поэтапно проследить деятельность Теслы в интересующей нас области нелокальных квантовых эффектов просто невозможно. Кажется, будто великий изобретатель одновременно штурмует крепость науки со всех направлений, работая сразу в нескольких областях бионики, биофизики, радиофизики, атомной физики и, конечно же, электрофизики высоких колебаний. Все его исследования тематически перекликаются друг с другом и взаимосвязаны в тугой узел общей проблематики, но всегда в них присутствует стержневая основа — электричество, таинственная материя, основанная на всепроникающей эфирной субстанции, лежащей в основе мироздания.