«ПРИЧИНА ГЛАВНАЯ МОЕЙ НАУЧНОЙ ИЗВЕСТНОСТИ» (1868–1872)

We use cookies. Read the Privacy and Cookie Policy

«ПРИЧИНА ГЛАВНАЯ МОЕЙ НАУЧНОЙ ИЗВЕСТНОСТИ»

(1868–1872)

Много лет спустя О. Озаровская, работавшая под началом Менделеева в Главной палате мер и весов, в своих воспоминаниях рассказывает, как однажды, когда она под диктовку Дмитрия Ивановича писала письмо, доложили, что пришел посетитель. Едва тот появился на пороге, Менделеев потребовал:

— Кто такой? Карточку.

— Сотрудник газеты «Петербургский листок», ваше превосходительство.

— Дмитрий Иванович! — выразительно поправил интервьюера Дмитрий Иванович. — Карточку! Не знаю, кто такой-с! Ну-с, что угодно! Я занят!

— Я, ваше превосход…

— Дмитрий Иванович!

— Я пришел, ваше превос…

— А-а, да Дмитрий Иванович!

— Я, Дмитрий Иванович, — уразумел наконец газетный сотрудник, — оторву у вас лишь несколько минут…

— Скорей, только скорей! Мы заняты: видите, письмо пишем! Ну-с! Что угодно?..

— Позвольте вас спросить, какого вы мнения о радии?

— О-о-о-о?! О Господи!

Дмитрий Иванович склонился весь налево вниз и долго стонал, вздыхал и тряс головой: «О Господи!» Потом он повернулся к гостю и на высоких нотах жалобы заговорил:

— Да как же я с вами разговаривать-то буду? Ведь вы, я чай, ни черта не понимаете? Ну как же я с вами о радии говорить буду? Ну-с, вот вам моя статья: коли поймете, так и слава богу… Ну-с, все? Что еще? Только скорей. Время-то, время идет!

— Как вам пришла и голову, Дмитрий Иванович, ваша периодическая система?

— О-о! Господи!

Те же стоны, потрясанье головой, вздохи и смех: кх, кх, кх, кх. И наконец решительное:

— Да ведь не так, как у вас, батенька! Не пятак за строчку! Не так, как вы! Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг пятак за строчку, пятак за строчку готово! Не так-с!..

Во внезапной вспышке Менделеева проявилось все его ожесточение против обывательских представлений о науке и о научной работе. И раздражение его было тем более сильным, что отчасти он сам невольно, не подозревая об этом, дал повод к облегченному представлению о своем великом открытии.

Как-то раз А. Иностранцев, ученик и сотрудник Менделеева, застав Дмитрия Ивановича в хорошем настроении, стал расспрашивать его об обстоятельствах открытия периодического закона. И Дмитрий Иванович рассказал ему, что, заподозрив существование взаимосвязи между элементами еще в студенческие годы, он не уставал обдумывать эту проблему со всех сторон, собирать материалы, сравнивать и сопоставлять цифры. Наконец настало время, когда проблема созрела, когда решение, казалось, вот-вот готово было сложиться в голове. Как всегда бывало в жизни Менделеева, предчувствие близкого разрешения мучившего его вопроса привело Дмитрия Ивановича в возбужденное состояние. В течение нескольких недель он спал урывками, пытаясь найти тот магический принцип, который сразу привел бы в порядок всю груду накопленного за пятнадцать лет материала. И вот в одно прекрасное утро, проведя бессонную ночь и отчаявшись найти решение, он, не раздеваясь, прилег на диван в кабинете и заснул. И во сне ему совершенно ясно представилась таблица. Он тут же проснулся и набросал увиденную во сне таблицу на первом же подвернувшемся под руку клочке бумаги.

По всей видимости, не одному Иностранцеву Дмитрий Иванович рассказывал об этом случае. Но если Иностранцев, как человек, знакомый с научной работой, мог правильно понять и оценить значение этого факта, если Иностранцев увидел в этом случае «один из превосходнейших примеров психологического воздействия усиленной работы мозга на ум человека», то научно малограмотная, но начитанная публика усмотрела в нем лишь подтверждение легковесного представления о научном открытии, нежданно-негаданно явившемся ученому во сне. И на старости лет Дмитрию Ивановичу пришлось с вполне понятным раздражением подчеркивать необходимость и важность непрерывной и целеустремленной работы, предшествовавшей открытию периодической системы элементов.

Один писатель, когда его спрашивали, о чем он написал в своем очередном романе, молча подходил к полке, брал в руки этот роман и начинал читать его с первой страницы. Такое поведение кажется странным лишь на первый взгляд, ибо в действительности оно глубоко логично: если весь смысл романа можно изложить в двух словах, то и надо написать только эти два слова, а не раздувать их до размеров романа. По сути дела, на вопрос корреспондента «Петербургского листка» Менделеев, если бы он захотел дать настоящий ответ, должен был бы начать читать свои труды: «Изоморфизм», «Удельные объемы», «О молекулярном сцеплении некоторых органических жидкостей», «Химический конгресс в Карлсруэ», «Органическая химия» и так далее. Другими словами, он должен был бы изложить результаты своих почти пятнадцатилетних размышлений и исследований, предшествовавших 1867 году.

Летом этого года ректора Петербургского университета А. Воскресенского назначили попечителем Харьковского учебного округа, и, навсегда покидая университет, он рекомендовал на освобождаемую им должность профессора химии своего талантливого 33-летнего ученика Д. И. Менделеева. В то время в русских университетах были лишь две штатные должности по химии: профессор химии и профессор технической химии. 18 октября 1867 года совет университета утвердил перемещение Менделеева с должности профессора технической химии на должность профессора химии, поэтому ему пришлось немедленно приступить к чтению лекций по неорганической химии.

Надо сказать, Менделеев недолюбливал это название, и, не желая противопоставлять неорганическую химию органической, он стал именовать свой курс «общей химией», тем самым как бы подчеркивая единство и неразрывность этой науки. На освободившуюся должность профессора технической химии Дмитрий Иванович рекомендовал знаменитого уже создателя теории химического строения А. Бутлерова, работавшего в Казанском университете. По взаимной договоренности Бутлеров стал читать органическую химию, а техническую и аналитическую химию взял на себя Н. Меншуткин, избранный экстраординарным профессором. Таким образом, к 1868–1870 годам в стенах одного университета собрались три первоклассных химика, которые украсили русскую науку блестящими открытиями.

Особенно большую роль все эти перемещения сыграли в научной биографии Менделеева. С избранием его на должность профессора химии развитие прямой линии идеи, пронизывающей все его предшествующие работы, вступило в свою завершающую фазу. Приступив к чтению лекций, Дмитрий Иванович обнаружил: ни в России, ни за рубежом нет курса общей химии, достойного быть рекомендованным студентам. И таков был запас сил и знаний в молодом профессоре, такова была его духовная мощь, что он решил написать такой курс сам…

«Писать начал, когда стал после Воскресенского читать неорганическую химию в университете и когда, перебрав все книги, не нашел, что следует рекомендовать студентам, — писал в старости Дмитрий Иванович. — Писать заставляли и многие друзья, например Флоринский, Бородин. Писавши, изучил многое, например Mo, W, Ti, Ur, редкие металлы. Начал писать в 1868 году. Вышло всего 4 выпуска, и когда (1871) выходил последний, первого уже не было. Так как издавал сам, то получились и средства, а потом эта книга дала мне главный побочный доход — новыми изданиями. Тут много самостоятельного в мелочах, а главное — периодичность элементов, найденная именно при обработке «Основ химии».

Всякая книга есть отражение личности ее автора, но в ряду бессмертных творений человеческого духа менделеевские «Основы химии» занимают место совершенно исключительное. В отличие от ньютоновских «Начал натуральной философии», галилеевских «Бесед о двух системах мира» или дарвиновского «Происхождения видов» «Основы химии» не были созданы раз и навсегда. Эта великая книга, вышедшая при жизни Менделеева восемью изданиями, непрерывно углублялась, дополнялась и изменялась.

Как будто сопровождая Дмитрия Ивановича на протяжении почти сорока лет его жизни, «Основы химии» отражали постепенную эволюцию его взглядов. «Основы химии» не есть учебник в обычном понимании этого слова, но необычный сплав научных сведении, тонкого анализа, глубоких философских размышлении и брошенных мимоходом удивительных пророчеств.

«Сочинение напечатано двумя шрифтами, — писал Дмитрий Иванович в предисловии к третьему изданию, — с той целью, чтобы начинающий мог ознакомиться сперва с важными данными и законами, а потом уже с подробностями, которые без того могли бы затемнить картину целого». В «крупнопечатной» части своей книги Менделеев выступает и как специалист, скрупулезно выверяющий каждую формулу, каждую цифру; и как умелый, виртуозно владеющий, играющий находящимся в его распоряжении научным, материалом; и как химик, пристально следящий за развитием своей науки, мимо которого не проходит незамеченным ни одно новое исследование, новое направление, новое открытие. В этой части своего труда Менделеев ни на минуту не отрывается от прочного экспериментального фундамента химии, и любые новые открытия, теории и гипотезы могут внести лишь уточнения и дополнения в бессмертный труд Дмитрия Ивановича, но не перечеркнуть, не обесценить его полностью.

Что же касается «мелкопечатного» текста «Основ химик», то в нем содержится драгоценнейший материал для того, кто хочет разобраться во взглядах Менделеева на науку вообще и на химию в частности, на теорию и практику, на гипотезы и на эксперименты, на прошлое, настоящее и будущее науки. Оказавшись перед необходимостью систематически изложить такую обширную науку, какова химия, Дмитрий Иванович получил прекрасный повод для размышлений, о месте и роли науки, в жизни человечества.

«Два самые мощные ума, которые произвела Англия, были Шекспир и Ньютон, — писал Г. Бокль, английский философ, необычайно популярный в России в 1860—1870-х годах, — и что Шекспир предшествовал Ньютону, это не было… обстоятельством случайным, безразличным. Шекспир и поэты сеяли семена, а Ньютон и философы собирали жатву». Эту мысль продолжил и уточнил французский философ Г. Тард: «Если имеем перед собою народ очень сведущий в математике, то отсюда нельзя еще заключить, что он уже очень просвещенный в химии или в медицине, тогда как если в этом народе существуют выдающиеся химики и физиологи, то можно быть уверенным, что в нем существуют (или что в нем существовали) первостепенные геометры».

Пример России, где великому химику Менделееву предшествовал великий математик Лобачевский, может служить прекрасным подтверждением этих слов, понятных и близких самому Дмитрию Ивановичу. Искусства, считал Менделеев, «стремятся путем образов и предчувствий, так сказать полубессознательно, совершенно к тому же, что сознательно вырабатывается в науке». Приняв эту мысль, он по необходимости должен был принять и вытекающее из нее следствие: науки не есть компания равноправных сверстником, но скорее семья, состоящая из дедов, отцов и детей. И как дети не могут появиться на свет раньше родителей, так и химия не может процвести раньше математики, а математика раньше философии. «Недалеко то время, — писал Дмитрий Иванович в своих «Основах химии», — когда звание химии и физики будет таким же признаком и средством образования, как за сто-двести лет тому назад считалось знание классиков, потому что тогда их изучение было задатком возрождения, было средством против укрепившихся суеверий… Как тогда философские системы, весь строй наук опирался на классиков, так и ныне другие науки или опираются, или стараются опереться на естествознание, а оно берет свои методы от физики и химии».

Физика и химия… Менделеев много размышлял, сравнивал и сопоставлял, прежде чем в голове его сложилось ясное представление о месте и роли этих наук. «Явлением должно называть то, что совершается во времени с веществами и телами, — писал Дмитрий Иванович, в «Основах химии». — Явления сами по себе составляют основной предмет изучения физики. Веществами занимается химия… ее вместе с механикою, изучающею движения, должно положить в основу естествознания». Изучение веществ отличается от изучения явлений, поэтому химик к предмету своей науки подходит не совсем так, как, скажем, механик или даже физик. Он не может считать массу сосредоточенной в точке, не имеющей размера; не может приписывать изучаемым телам абсолютной твердости, упругости или теплопроводности. И эта нерасторжимая взаимосвязанность, всех свойств приводит к тому, что в химии, как ни в какой другой науке, проявляется, по словам Менделеева, «лживость учения, говорящего «не в форме дело, в существе», потому что существо нельзя постичь помимо формы, а истину завоевать без средств, основанных на правде и труде, одним набегом мысли».

Дмитрий Иванович не случайно упоминает об обычае действовать «набегом мысли». В начале XIX века немецкий философ-идеалист Ф. Шеллинг корил Ньютона и Бойля за то, что они «испортили» физику, положив в основу своих исследовании опыт, а не единый всеобъемлющий принцип. Правда, Шеллинг был отнюдь не первым, кто считал единственным методом науки дедукцию, идущую от общего к частному, от принципа к факту. Но возведение дедукции в абсолют, сделанное Шеллингом, было последним всплеском. Индукция, идущая от частного к общему, всюду в естественных науках не только одержала верх, но и хватила через край. «Одно число больше стоит, чем целая библиотека гипотез».

Сейчас трудно даже себе представить, какие печальные последствия повлекло за собой неукоснительное следование этому девизу. «Мы находимся в таком положении, — писал в прошлом веке Бойль, — что у нас факты опередили знание и затрудняют теперь его движение вперед… Благодаря неутомимой деятельности нынешнего и прошедшего столетий мы обладаем теперь громадною, бессвязною массою наблюдений, которые были накоплены с большой заботливостью, но останутся совершенно бесполезными до тех пор, пока не будут связаны какою-нибудь господствующею идеею. Лучшим средством для извлечения из них пользы было бы дать более простора воображению и совместить дух поэзии с духом науки».

Человек, способный совместить дух поэзии с духом науки, должен быть одинаково силен и в дедукции, и в индукции, а, по мнению Бойля, таких людей в истории мировой науки было всего двое — Аристотель и Ньютон. Думается, к этому списку можно смело приобщить и ими Дмитрия Ивановича Менделеева.

Если философы древности высокомерно заявляли, что «наука тем выше, чем она менее полезна», то Менделеев считал основными целями науки предвидение и пользу. Если философы древности норовили не размениваться на мелочи, а «набегом мысли» пытались сразу ухватить «начало всех начал», то Менделеев считал, что надо отказаться от мысли прямо познать истину. Но следует медленным и трудным путем опыта доходить до обобщающих принципов, через правду познавать истину. «Ежедневная видимость восхождения и заката солнца и звезд дает неверное суждение о том, что свод небесный движется, а мы с землею остаемся неподвижными. Эта видимая правда далека от истины и ей даже противоположна… Опыт сам по себе не дает истины, но он дает возможность устранять ложные представления, а истинные подтверждает во всех их следствиях».

Приступая к работе над «Основами химии», Дмитрий Иванович интуитивно чувствовал, что самый предмет требует необычайного искусства изложения, что невозможно отделять теорию от практики, что должно разгадать секрет того сверкающего сплава, который получается при соответствии структуры книги ее научному материалу.

«Здание науки требует не только материала, — писал он в предисловии к своей бессмертной книге, — но и плана, гармонии… Научное мировоззрение и составляет план и гармонию научного здания. Притом, пока нет плана — нет и возможности узнать много из того даже, что уже было кому-либо известно, что уже сложено. Многие факты химии, не нанесенные на ее план, часто открывались не раз, а два, три и более раза. В лабиринте известных фактов легко потеряться без плана, и самый план уже известного иногда стоит такого труда изучения, доли какого не стоит изучение многих отдельных фактов. Узнать, понять, охватить гармонию научного здания с его недостроенными частями — значит получить такое наслаждение, какое дает только высшая красота и правда».

Менделеевы въехали в казенную университетскую квартиру 24 ноября 1806 года, и с этого дня жизнь Дмитрия Ивановича в течение четверти века была теснейшим образом связана с Петербургским университетом. Квартира состояла из гостиной, зала, столовой, спальни, детских комнат, комнат для гувернантки, учителя и прислуги, кладовой и кухни. Скромная мебель, обитая полосатым красно-серым тиком, терялась в огромных комнатах, в которых сам Дмитрий Иванович появлялся редко.

Все свое время он проводил в кабинете, куда утром ему приносили стакан горячего молока, большую фарфоровую чашку крепчайшего сладкого чая, лепешки из каши и несколько кусочков французской булки. Чашка всегда должна была быть полной, так как во время работы он пил и остывший чай.

За обедом вся семья собиралась вместе. Дмитрий Иванович, не желая терять время на ожидание, входил в столовую, когда суп был уже на столе. Быстро подходил к детям, целовал в голову и садился напротив Феозвы Никитичны. Дети затихали, потому что знали: пустой болтовни за столом отец не любит. Не раз, бывало, он останавливал их словами: «Помолчать надо» или «Речь — серебро, а молчание — золото». Сразу же после жаркого Дмитрий Иванович, не дожидаясь сладкого блюда, вставал из-за стола, благодарил жену и, как бы извиняясь, говорил: «А я пойду к себе».

К завтраку Дмитрию Ивановичу подавали в кабинет бифштекс с макаронами или котлеты с рисом или картофелем. За обедом — немного бульона или ухи, кусочек рыбы или котлету. Иногда он изобретал какое-нибудь новое кушанье: отварной рис с красным вином, ячневая каша, гречневая каша крутая или размазня, поджаренные на масле лепешки из вареного риса или геркулеса. За обедом Дмитрий Иванович иногда выпивал маленький стаканчик кахетинского вина или бордо. Иногда пил сидр или домашний квас. Сладкого Дмитрий Иванович не ел почти никогда, хотя в его кабинете всегда были фрукты и сласти: для угощения знакомых, родных и детей. Зато неравнодушен был к блинам: «Люблю я их, проклятых, хоть они мне и вредны». Настоящей же слабостью Дмитрия Ивановича был чай и табак.

В те годы лучшие сорта чая из Китая доставлялись караванами в Кяхту, и именно оттуда и выписывал чай Менделеев. Он заказывал его на несколько лет сразу, и, когда цибики доставляли в квартиру, все семейство принималось за переборку и упаковку чая. Пол устилался скатертями, цибики вскрывали, высыпали весь чай на скатерти и быстро смешивали. Делать это приходилось потому, что чай в цибиках лежал слоями и смешивать его надо было как можно быстрее, чтобы он не выдохся. Потом чай насыпали в огромные стеклянные бутылки и плотно их закупоривали. В церемонии участвовали все члены семьи и оделялись чаем все домочадцы и родственники. Менделеевский чай заслужил большую славу среди знакомых, и сам Дмитрий Иванович, не признавая никакого другого, в гостях чая никогда не пил. В кабинете во время работы чай почти не сходил у него со столика по левую руку. Всякому, кто приходил к нему по делу, он предлагал: «Хотите чаю?» И тут же говорил служителю: «Михайло, чаю». И крепкий сладкий чай всегда свежей заварки моментально появлялся перед гостем.

Табак Дмитрий Иванович тоже закупал сразу на несколько лет и тоже высшего качества. Радушно встречал посетителей, он всегда угощал их своими папиросами, так как не любил запаха чужого табака. Сам себе он крутил толстейшие папиросы, и над ним всегда поднимался к потолку густой столб табачного дыма. «Смотрю я на прожженные табаком коричневые пальцы Менделеева, — вспоминал художник Я. Минченков, — и говорю: «Как это вы, Дмитрий Иванович, не бережете себя от никотина, вы, как ученый, знаете его вред». А он отвечает: «Врут ученые: я пропускал дым сквозь вату, насыщенную микробами, и увидел, что он убивает некоторых из них. Вот видите — даже польза есть. И вот курю, курю, а не чувствую, чтобы поглупел или потерял здоровье».

Не желая тратить время на выбор одежды, Дмитрий Иванович свел заботы о ней к минимуму. Дома носил темно-серую блузу придуманного им самим фасона, причем по заведенному порядку портной должен был являться в определенное время сам, без вызова. Бывало, увидит Дмитрий Иванович на пороге портного, замашет руками, приговаривая: «Э, батенька, шейте как раньше».

Живя в университете, Дмитрий Иванович выбирал для лекции всегда утренние часы, чтобы осталось больше времени для научной работы. Но, привыкнув трудиться ночью и ложась иногда в 4–5 часов утра, он боялся проспать на лекцию, поэтому служитель был предупрежден: если в 8 часов 5 минут Дмитрия Ивановича нет, надо идти его будить. Тогда, еле умывшись, одеваясь на ходу, Менделеев стремительно поднимался по лестнице, быстро вполголоса спрашивал ассистента: «На чем остановился?» — и, взойдя на кафедру, обычным тоном начинал лекцию. Читал он два часа с перерывом в 10–15 минут. Лекции требовали от него большого напряжения. Он выходил усталый, потный и, опасаясь простуды, от которой всегда берегся, некоторое время сидел в препаровочной, накинув на плечи осеннее пальто, предусмотрительно приносимое служителем. Сотрудники очень любили эти послелекционные рекреации Дмитрия Ивановича. Обычно он бывал настроен благодушно, покуривал свои «крученки», рассказывал всякие истории, обсуждал химические новости, университетские и лабораторные и даже домашние дела.

Вернувшись домой, Дмитрий Иванович сразу удалялся в кабинет и работал часов до 5–5.30. Если погода была хорошая, выходил на 15–30 минут прогуляться, но, не любя бесцельных прогулок, он обязательно что-нибудь покупал: сладкое, фрукты, рыбу, которую очень любил, игрушки и книги для детей. Обедал всегда в 6 часов, потом отдыхал: играл с кем-нибудь в шахматы или раскладывал пасьянс. Домашние, для которых Дмитрий Иванович был кумиром, утверждали, что в шахматы он играл очень хорошо, что действовал обдуманно, весь уходил в игру и очень редко получал мат. Сыграв тринадцать партии с самим Чигориным, он даже выиграл одну партию у знаменитого шахматиста. Но, по мнению знатоков, Менделеев играл в шахматы несильно: нервничал, горячился, брал свои ходы назад. Если партнера не было, он раскладывал пасьянс, пока ему читали что-нибудь вслух. При этом он всегда сердился, если ему подсказывали, куда положить карту: он любил самостоятельность во всем.

После отдыха Дмитрий Иванович снова удалялся в кабинет. Здесь, среди шкафов и полок с книгами, стеклянных трубок, колб, реторт и пробирок, он работал до глубокой ночи. И если бы кто-нибудь из университетского сада заглянул в такой поздний час в светящиеся, доходящие почти до самой земли огромные окна, то он увидел бы, как Дмитрий Иванович либо пишет за высокой конторкой, стоящей посреди комнаты у газового рожка, либо читает, сидя в углу дивана, обитого серым с красным тиком. Того самого, на котором, по преданию, он заснул 17 февраля 1869 года, когда ему приснилась периодическая система элементов…

В 1869 году ни один человек в мире не думал о классификации химических элементов больше, чем Менделеев, и, пожалуй, ни один химик не знал о химических элементах больше, чем он. Он знал, что сходство кристаллических форм, проявляющееся при изоморфизме, не всегда достаточное основание для суждения о сходстве элементов. Он знал, что и удельные объемы тоже не дают ясного руководящего принципа для классификации. Он знал, что вообще изучение сцеплений, теплоемкостей, плотностей, показателей преломления, спектральных явлений еще не достигло уровня, который позволил бы положить эти свойства в основу научной классификации элементов. Но он знал и другое — то, что такая классификация, такая система обязательно должна существовать. Ее угадывали, ее пытались расшифровать многие ученые, и Дмитрий Иванович, пристально следивший за работами в интересующей его области, не мог не знать об этих попытках.

То, что некоторые элементы проявляют черты совершенно явного сходства, ни для одного химика тех лет не было секретом. Сходство между литием, натрием и калием, между хлором, бромом и йодом или между кальцием, стронцием и барием бросалось в глаза любому. И от внимания Дюма не ускользнули интересные соотношения атомных весов таких сходственных элементов. Так, атомный вес натрия равен полусумме весов соседствующих с ним лития и калия. То же самое можно сказать о стронции и его соседях кальции и барии. Больше того, Дюма обнаружил такие странные цифровые аналогии у сходственных элементов, которые воскрешали в памяти попытки пифагорейцев найти сущность мира в числах и их комбинациях. В самом: деле, атомный вес лития равен 7, натрия — 7 + (1 X 16) = 23, калия — 7 + (2 X 16) = 39!

В 1853 году английский химик Дж. Гладстон обратил внимание на то, что элементы с близкими атомными весами сходны по химическим свойствам: таковы платина, родий, иридий, осмий, палладий и рутений или железо, кобальт, никель. Спустя четыре года швед Ленсен объединил по химическому сходству несколько «триад»: рутений — родий — палладий; осмий — платина — иридий; марганец — железо — кобальт. Немец М. Петтенкофер отметил особое значение чисел 8 и 18, так как разности между атомными весами сходственных элементов оказывались нередко близкими 8 и 18 либо кратными им. Были сделаны даже попытки составить таблицы элементов. В библиотеке Менделеева сохранилась книга германского химика Л. Гмелина, в которой в 1843 году была опубликована такая таблица. В 1857 году английский химик В. Одлинг предложил свои вариант. Но…

«Все замеченные отношения в атомных весах аналогов, — писал Дмитрий Иванович, — не привели, однако, по сих пор ни к одному логическому следствию, не получили даже и права гражданства в науке по причине многих недостатков. Во-первых, не явилось сколько то мне известно, ни одного обобщении, связывающего все известные естественные группы в одно целое, и оттого выводы, сделанные для некоторых групп, страдали отрывочностью и не вели к каким-либо дальнейшим логическим заключениям, представлялись необходимым и неожиданным, явлением… Во-вторых, замечены были такие факты… где сходные элементы имели близкие атомные веса. В выводе поэтому можно было только сказать, что сходство элементов связано иногда с близостью атомных весов, а иногда с правильным возрастанием их величины. В-третьих, между несходными элементами и не искали даже каких-либо точных и простых соотношений в атомных весах…»

В библиотеке Менделеева до сих пор хранится книга германского химика А. Штреккера «Теории и эксперименты для определения атомных весов элементов», которую Дмитрий Иванович привез из первой заграничной командировки. И читал он ее внимательно. Об этом свидетельствуют многочисленные пометки на полях, об этом свидетельствует отмеченная Дмитрием Ивановичем фраза: «Вышевыставленные отношения между атомными весами… химически сходственных элементов, конечно, едва ли могут быть приписаны случайности, но ныне мы должны предоставить будущему отыскание закономерности, проглядывающей между указанными числами». Слова эти были написаны в 1859 году, а ровно десять лет спустя настало время открытия этой закономерности.

«Меня неоднократно спрашивали, — вспоминает Менделеев, — на основании чего, исходя из какой мысли, найден был мною и упорно защищаем периодический закон?.. Моя личная мысль во все времена… останавливалась на том, что вещество, силу и дух мы бессильны понимать в их существе или в раздельности, что мы можем их изучать в проявлениях, где они неизбежно сочетаны, и что в них, кроме присущей им вечности, есть свои — постижимые — общие самобытные признаки или свойства, которые и следует изучать на все лады. Посвятив свои силы изучению вещества, я вижу в нем два таких признака или свойства: массу, занимающую пространство и проявляющуюся… яснее или реальнее всего в весе, и индивидуальность, выраженную в химических превращениях, а яснее всего в представлении о химических элементах. Когда думаешь о веществе… нельзя, для меня, избежать двух вопросов: сколько и какого дано вещества, чему и соответствуют понятия массы и химических элементов… Поэтому невольно зарождается мысль о том, что между массою и химическими элементами необходимо должна быть связь, а так как масса вещества… выражается окончательно в виде атомов, то надо искать функционального соответствия между индивидуальными свойствами элементов и их атомными весами… Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса…»

В этом описании все выглядит очень просто, но чтобы хоть отдаленно представить себе всю неимоверную трудность содеянного, надо уяснить, что кроется за несколько расплывчатым понятием «индивидуальность, выраженная в химических превращениях». В самом деле, атомный вес — понятная и легковыразимая в цифрах величина. Но как, в каких цифрах можно выразить способность элемента к химическим реакциям?

Сейчас человек, знакомый с химией хотя бы в объеме средней школы, легко ответит на этот вопрос: способность элемента давать те или иные типы химических соединений определяется его валентностью. Но в наши дни сказать это только потому легко, что именно периодическая система способствовала выработке современного представления о валентности. Как мы уже говорили, понятие о валентности (Менделеев называл его атомностью) ввел в химию Франкланд, заметивший, что атом того или иного элемента может связать определенное число атомов других элементов. Скажем, атом хлора может связать один атом водорода, поэтому оба эти элемента одновалентные. Кислород в молекуле воды связывает два атома одновалентного водорода, следовательно, кислород двухвалентен. В аммиаке на атом азота приходится три атома водорода, поэтому в этом соединении азот трехвалентен. Наконец, в молекуле метана один атом углерода удерживает четыре атома водорода. Четырехвалентность углерода подтверждается еще и тем, что в углекислом газе в полном соответствии с теорией валентности углеродный атом удерживает два двухвалентных атома кислорода. Установление четырехвалентности углерода сыграло такую важную роль в становлении органической химии, разъяснило в этой науке такое множество запутанных вопросов, что германский химик Кекуле (тот самый, который придумал бензольное кольцо) заявлял: валентность элемента так же постоянна, как и его атомный вес.

Если бы это убеждение соответствовало действительности, задача, стоящая перед Менделеевым, упростилась бы до крайности: ему нужно было бы просто сопоставить валентность элементов с их атомным весом. Но в том-то и заключалась вся сложность, что Кекуле хватил через край. Перехват этот, необходимый и важный для органической химии, был очевиден всякому химику. Даже углерод и тот в молекуле угарного газа связывал лишь один атом кислорода и был, следовательно, не четырех-, а двухвалентным. Азот же давал целую гамму соединений: N2O, NO, N2O3, NO2, N2O5, в которых он пребывал в одно-, двух-, трех-, четырех- и пятивалентном состояниях.

Кроме того, было и еще одно странное обстоятельство: хлор, соединяющийся с одним атомом водорода, следует считать одновалентным элементом. Натрий, два атома которого соединяются с одним атомом двухвалентного кислорода, тоже следует считать одновалентным. Выходит, в группу одновалентных попадают элементы, не только не имеющие между собой ничего общего, но являющиеся прямо-таки химическими антиподами. Чтобы как-то отличать такие одинакововалентные, но малопохожие элементы, химики были вынуждены в каждом случае делать оговорку: одновалентный по водороду или одновалентный по кислороду.

Менделеев ясно понимал всю «шаткость учения об атомности элементов», но так же ясно он понимал и то, что атомность (то есть валентность) — ключ к классификации. «Для характеристики элемента, кроме прочих данных, требуются два путем наблюдений опыта и сличений добываемых данных: знание атомного веса и знание атомности». Вот когда пригодился Менделееву опыт работы над «Органической химией», вот когда пригодилась ему идея о ненасыщенных и насыщенных, предельных органических соединениях. По сути дела, прямая аналогия подсказала ему, что из всех значений валентности, которые может иметь данный элемент, характеристическим, тем, который надо класть в основу классификации, следует считать наивысшую предельную валентность.

Что же касается вопроса о том, какой валентностью — по водороду или по кислороду — руководствоваться, то ответ на него Менделеев нашел довольно легко. В то время как с водородом соединяются сравнительно немногие элементы, с кислородом соединяются практически все, поэтому формой именно кислородных соединений — окислов — должно руководствоваться при построении системы. Эти соображения отнюдь не беспочвенные догадки. Недавно в архиве ученого была обнаружена интереснейшая таблица, составленная Дмитрием Ивановичем и 1862 году, вскоре после издания «Органической химии». В этой таблице приведены все известные Менделееву кислородные соединения 25 элементов. И когда спустя семь лет Дмитрий Иванович приступил к завершающему этапу, эта таблица, несомненно, сослужила ему отличную службу.

Раскладывая карточки, переставляя их, меняя местами, Дмитрий Иванович пристально всматривается в скупые сокращенные записки и цифры. Вот щелочные металлы — литий, натрий, калий, рубидий, цезий. Как ярко выражена в них «металличность»! Не та «металличность», под которой любой человек понимает характерный блеск, ковкость, высокую прочность и теплопроводность, но «металличность» химическая. «Металличность», заставляющая эти мягкие легкоплавкие металлы быстро окисляться и даже гореть в воздухе, давая при этом прочные окислы. Соединяясь с водой, эти окислы образуют едкие щелочи, окрашивающие лакмус в синий цвет. Все они одновалентны по кислороду и дают удивительно правильные изменения плотности, температуры плавления и кипения в зависимости от нарастания атомного веса.

А вот антиподы щелочных металлов — галогены — фтор, хлор, бром, йод. Дмитрий Иванович может лишь догадываться, что самый легкий из них — фтор, — по всей видимости, газ. Ибо в 1869 году еще никому не удалось выделить из соединений фтор — типичнейший и самый, энергичный из всех неметаллов. За ним следует более тяжелый, хорошо изученный газ хлор, затем темно-бурая жидкость с резким запахом — бром, и кристаллический с металлическим отблеском йод. Галогены тоже одновалентны, но одновалентны по водороду. С кислородом же они дают ряд неустойчивых окислов, из которых предельный имеет формулу R2O7. Это значит: максимальная валентность галогенов по кислороду — 7. Раствор Cl2O7 в воде дает сильную хлорную кислоту, окрашивающую лакмусовую бумагу в красный цвет.

Наметанный глаз Менделеева выделяет еще некоторые группы элементов, не столь, правда, яркие, как щелочные металлы и галогены. Щелочноземельные металлы — кальций, стронций и барий, дающие окислы типа RO; сера, селен, теллур, образующие высший окисел типа RO3; азот и фосфор с высшим окислом R2O5. Прослеживается, хотя и не явное, химическое сходство между углеродом и кремнием, дающими окислы типа RO2, и между алюминием и бором, высший окисел которых R2O3. Но дальше все спутывается, различия смазываются, индивидуальности утрачиваются. И хотя существование отдельных групп, отдельных семейств можно было считать установленным фактом, «связь групп была совершенно неясна: тут галоиды, тут щелочные металлы, тут металлы, подобные цинку, — друг в друга они точно так же не превращаются, как одна семья в другую. Другими словами, неизвестно было, как эти семьи между собой связаны».

В наши дни легко сказать: смысл периодического закона — установление зависимости между наивысшей валентностью по кислороду и атомным весом элемента. Но тогда, сто с лишним лет назад, из нынешних 104 элементов Менделееву были известны лишь 63; атомные веса десяти из них оказались заниженными в 1,5–2 раза; из 63 элементов лишь 17 соединялись с водородом, а высшие солеобразующие окислы многих элементов разлагались с такой быстротой, что были неизвестны, поэтому высшая валентность по кислороду у них оказывалась заниженной. Но самую большую трудность представляли элементы с промежуточными свойствами. Взять, к примеру, алюминии. По физическим свойствам — это металл, а по химическим — не поймешь что. Соединение его окисла с водой — странное вещество, не то слабая щелочь, не то слабая кислота. Все зависит от того, с чем оно реагирует. С сильной кислотой оно ведет себя как щелочь, а с сильной щелочью — как кислота.

Глубокий знаток менделеевских работ по периодическому закону академик Б. Кедров считает, что Дмитрий Иванович в своих изысканиях шел от хорошо известного к неизвестному, от явного к неявному. Сначала он выстроил горизонтальный ряд щелочных металлов, так напоминающий ему гомологические ряды органической химии.

Li=7; Na=23; K=39; Rb=85,4; Cs=133

Всматриваясь во второй ярко выраженный ряд — галогены, — он обнаружил удивительную закономерность: каждый галоген легче близкого и нему по атомному весу щелочного металла на 4–6 единиц. Значит, ряд галогенов можно поставить над рядом щелочных металлов:

F Cl Br J

Li Na K Rb Cs

Что дальше? Щелочноземельные металлы на 1–3 единицы тяжелее щелочных, стало быть, их — вниз:

F Cl Br J

Li Na K Rb Cs

Ca Sr Ba

Атомный вес фтора — 19, ближе всего к нему примыкает кислород — 16. Не ясно ли, что над галогенами надо поставить семейство аналогов кислорода — серу, селен, теллур? Еще выше — семейство азота: фосфор, мышьяк, сурьму, висмут. Атомный вес каждого члена, этого семейства на 1–2 единицы меньше, чем атомный вес элементов из семейства кислорода. По мере того как укладывается ряд за рядом, Менделеев все более и более укрепляется в мысли, что он на правильном пути. Валентность по кислороду от 7 у галогенов последовательно уменьшается при перемещении вверх. Для элементов из семейства кислорода она равна 6, азота — 5, углерода — 4. Следовательно, дальше должен идти трехвалентный бор. И точно: атомный вес бора на единицу меньше атомного веса предшествующего ему углерода…

В феврале 1869 года Менделеев разослал многим химикам отпечатанный на отдельном листке «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». А 6 марта делопроизводитель Русского химического общества Н. Меншуткин вместо отсутствовавшего Менделеева зачитал на заседании общества сообщение о предложенной Дмитрием Ивановичем классификации.

Изучая этот непривычный для современного взгляда вертикальный вариант менделеевской таблицы, нетрудно убедиться в том, что он, если так можно выразиться, разомкнут, что к его жесткому костяку — поставленным рядом щелочным металлам и галогенам — сверху и снизу примыкают ряды элементов с менее ярко выраженными переходными свойствами. Было в этом первом варианте и несколько неправильно расположенных элементов: так ртуть попала в группу меди, уран и золото — в группу алюминия, таллий — в группу щелочных металлов, марганец — в одну группу с родием и платиной, а кобальт и никель заняли одно место. Вопросительные знаки, поставленные около символов некоторых элементов, свидетельствуют о том, что сам Менделеев сомневался в правильности определения атомных весов тория, теллура и золота и считал спорным положение в таблице эрбия, иттрии и индия. Но все эти неточности отнюдь не должны умалить важности самого вывода: именно этот первый, несовершенный еще вариант привел Дмитрия Ивановича к открытию великого закона, побудившего его поставить четыре вопросительных знака там, где должны были стоить символы четырех элементов…

Сопоставление элементов, расположенных в вертикальных столбцах, навело Менделеева на мысль, что свойства их изменяются периодически по мере нарастания атомного веса. Это был принципиально новый и неожиданный вывод, так как от предшественников Менделеева, увлекавшихся созерцанием линейного изменения свойств сходственных элементов в группах, ускользала эта периодичность, позволившая связать воедино все казавшиеся разрозненными группы. В «Основах химии», изданных в 1903 году, есть таблица, с помощью которой Дмитрий Иванович сделал периодичность свойств химических элементов необычайно наглядной. В длинный столбец он выписал все известные к тому времени элементы, а справа и слева поместил цифры, показывающие удельные объемы и температуры плавления, и формулы высших окислов и гидратов, причем чем выше валентность, тем дальше от символа отстоит соответствующая формула. При беглом взгляде на эту таблицу сразу видишь, как периодически нарастают и убывают цифры, отражающие свойства элементов, по мере неуклонного увеличения атомного веса.

В 1869 году неожиданные перерывы в этом плавном нарастании и убывании чисел доставили Менделееву немало затруднений. Укладывая один ряд за другим, Дмитрий Иванович обнаружил, что в столбце, идущем вверх от рубидия, вслед за пятивалентным мышьяком идет двухвалентный цинк. Резкий перепад атомного веса — 10 единиц вместо 3–5, и полное отсутствие сходства между свойствами цинка и углерода, стоящего во главе этой группы, навели Дмитрия Ивановича на мысль: в перекрестии пятого горизонтального ряда и третьего вертикального столбца должен находиться не открытый еще четырехвалентный элемент, напоминающий по свойствам углерод и кремний. А поскольку цинк ничего общего не имел и с идущей далее группой бора и алюминия, Менделеев предположил, что науке еще неизвестен и один трехвалентный элемент — аналог бора. Такие же соображения побудили его предположить существование еще двух элементов с атомными весами 45 и 180.

Понадобилась поистине изумительная химическая интуиции Менделеева, чтобы сделать столь смелые предположения, и понадобилась его поистине необъятная химическая эрудиции, чтобы предсказать свойства не открытых еще элементов и исправить многие заблуждении, касающиеся элементов малоизученных. Дмитрий Иванович не случайно назвал свою первую таблицу «опытом», этим он как бы подчеркивал ее незавершенность; но в ближайший же год он придал периодической системе элементов ту совершенную форму, которая, почти не изменившись, сохранилась до наших дней.

«Разомкнутость» вертикального варианта, по-видимому, не соответствовала представлениям Менделеева о гармонии. Он чувствовал, что из хаотической кучи деталей ему удалось сложить машину, но он ясно видел, как далека эта машина от совершенства. И он решил переконструировать таблицу, разорвать тот двойной ряд, который был ее костяком, и поместить щелочные металлы и галогены на противоположных концах таблицы. Тогда все остальные элементы окажутся как бы внутри конструкции и будут служить постепенным естественным переходом от одной крайности к другой. И как часто бывает с гениальными творениями, формальная, казалось бы, перестройка вдруг открыла новые, ранее не подозреваемые и не угадываемые связи и сопоставлении.

К августу 1869 года Дмитрий Иванович составляет четыре новых наброска системы. Работая над ними, он выявил так называемые двойные сходственные отношения между элементами, которые вначале он помещал в различные группы. Так вторая группа — группа щелочноземельных металлов — оказалась состоящей из двух подгрупп: первой — бериллий, магний, кальций, стронций и барий и второй — цинк, кадмии, ртуть. Далее, уяснение периодической зависимости позволило Менделееву исправить атомные веса 11 элементов и изменить местоположение в системе 20 элементов! В итоге этой неистовой работы в 1871 году появилась знаменитая статья «Периодическая законность дли химических элементов» и тот классический вариант периодической системы, который ныне украшает химические и физические лаборатории во всем мире.

Сам Дмитрий Иванович очень гордился этой статьей.

В старости он писал: «Это лучший свод моих взглядов и соображении о периодичности элементов и оригинал, по которому писалось потом так много про эту систему. Это причина главная моей научной известности — потому что многое оправдалось гораздо позднее». И действительно, позднее многое оправдалось, но все это было позднее, а тогда…

…Тогда, в самый разгар титанической работы Менделеева над периодической системой, почти все друзья и доброжелатели в глубине души скорбели о «заблудшем химике». Деликатно, между делом они намекали Дмитрию Ивановичу, что следует-де бросить «бесплодные умозрения», заняться «делом, работой». По-видимому, особенно прямолинейно эти упреки высказал Менделееву академик Н. Зинин, поскольку под впечатлением минуты Дмитрий Иванович написал ему довольно резкое письмо.

Данный текст является ознакомительным фрагментом.