Принцип причинности

Принцип причинности

Часто простое кажется вздорным,

Черное белым, белое черным.

Мы выбираем, нас выбирают,

Как это часто не совпадает…

М. Танич

Если перевести содержание эпиграфа на физико-математический язык, то окажется, что эти строки выражают чрезвычайно сложную и фундаментальную философскую и естественнонаучную проблему ВЫБОРА. Ее можно сформулировать так:

нас ли выбирают обстоятельства (законы природы и начальные условия) для совершения тех или иных действий, или мы сами выбираем варианты поведения из предоставленных нам законами природы возможностей?

Первый вариант отражает концепцию детерминизма — движения по времени в соответствии с «объективными законами природы», предписывающими однозначную цепочку событий: причина — следствие. Пример: если шарик находится на гладкой горке (причина), то он обязательно скатится к определенной точке ее подножия (следствие). И, зная начальное его положение и «географию горки», мы по законам механики всегда можем вычислить положение в любой последующий миг. А если он находится на вершине? По какому склону он покатится? И тут детерминизм дает четкий ответ — ни по какому! Но стоит сместить шарик чуть-чуть (на бесконечно малое расстояние, на «дифференциал» от вершины) и точно знать, куда именно мы его сместили, детерминистические законы механики снова точно укажут результат его движения.

И в простых, и в более сложных случаях «наличие в природе дифференциала» определяет возможность предсказания поведения всей системы.

Напомню читателю смысл этого фундаментального математического понятия. По сути оно очень просто. Утверждается, что «кривую» линию можно заменить последовательностью маленьких отрезков прямой. Причем таким образом, что основные математические свойства исходной линии (ее суммарная длина, области пространства, через которые она проходит) почти не изменяются. Важно подчеркнуть, что это «почти» может быть сделано таким маленьким, что отличие не будет обнаружено при любой заданной степени точности. И до середины XX в. считалось, что такую операцию можно проделать с любой кривой.

Дифференциал — это и есть тот отрезок прямой, которым заменяют истинную кривую на коротком участке с соблюдением указанного условия. Коротком настолько, что его называют «бесконечно малым». Естественно при этом, что дифференциал не имеет никакой внутренней структуры и равномерно заполнен точками.

Физическим следствием такой математической процедуры является появление принципа причинности — если в данной точке кривой лежит начало «отрезка дифференциала» (причина), то в его конце однозначно возникает другая точка — следствие.

Второй вариант — это вариант со «свободой воли». Квантовая неопределенность — это только другая форма этого понятия. Здесь именно она, таинственная, но реальная способность к «свободному выбору» значения пары «причина — следствие» определяет направления движения во времени и творит действительность.

Что же осознал Р. И. Пименов? Оказалось, что техническое в математике понятие дифференциала незаслуженно заняло место физико-философского принципа причинности. Почему это произошло?

Данный текст является ознакомительным фрагментом.