От технологий аналоговых к цифровым
От технологий аналоговых к цифровым
Теперь мы должны проследить за вторым историческим путем. Но не волнуйтесь, совсем скоро они пересекутся.
Окружающий нас мир непрерывен за счет постоянства времени и пространства. Все изогнуто; прямые линии практически не появляются в природе. Объекты фактически не обладают четкими границами. Время никогда не останавливается. Мы воспринимаем Вселенную как континуум.
Но что, если вы хотите измерить природный мир, а затем воспользоваться информацией об этих измерениях? Оказывается, это очень сложно. Так как мир непрерывен, события и явления появляются в нем в виде волн с разными амплитудами, и информация, которую вы можете собрать, также волнообразна, она является аналоговой. Но аналоговой информацией сложно пользоваться, нужный сигнал тяжело отличить от побочного шума.
Тем не менее если вы будете измерять природный мир не по его поведению, но на основе того, есть ли в нем нечто или нет, то события станут легко опознаваемыми. Затем, если вы проведете каждое отдельное измерение действительно быстро, вы также сможете узнать о форме и мощности события. Это взгляд на мир с цифровой точки зрения. Преимущество цифровых данных состоит в том, что их легче собрать и ими легче управлять. Недостатком является тот факт, что они, как и математические исчисления, всегда будут оставаться лишь приблизительным измерением реальности. Но, как и в случае с вычислениями, если вы соберете достаточно примеров, у вас появится возможность построить модель, чертовски близкую к реальности.
Вот почему до начала XX века существовало лишь малое количество цифровых информационных устройств. Они могли измерять температуру дважды в неделю и вычислять среднее значение – это не было так уж полезно. Но с появлением вакуумных трубок и транзисторных переключателей стало возможно делать эти измерения десять, сто раз, а сегодня и почти миллиард раз в секунду. Все это остается приближенным к реальности значением, но столь близким, что различия в целом неважны (и в будущем, когда скорость измерения пересечет черту самых кратковременных событий во Вселенной, это действительно не будет иметь значения).
Отсюда начинает свой путь развитие цифровой электроники: появился способ измерять и использовать разрозненные данные так быстро и в таком объеме, что результат мог быть без страха применен в любой человеческой деятельности (даже в полетах в космос) и при любом природном явлении. Такая реальность лежит в основе Закона Мура: каждые пару лет цифровая технология увеличивает возможность запечатления и воспроизведения реальности в два раза. И каждый раз, когда это происходит, все больше новых продуктов, предприятий и индустрий получает возможность к существованию. Вот почему каждый предприимчивый бизнесмен или ученый попытался сделать все возможное для того, чтобы запрыгнуть на поезд Закона Мура, даже если это удалось (как в случае с проектом «Геном человека») только части индустрии (в данном случае – эмпирическому направлению, геномике).
Все же даже в случае транзисторов процесс сбора данных о природном мире еще не был окончен. Недостаточно было просто свести окружающую реальность к арифметическим выкладкам. Вы просто не можете заставить машину сложить два числа, даже если вы объясните ей, как работает сложение.
К счастью, решение было уже под рукой. Булева алгебра, созданная в 1845 году, была рассчитана на то, чтобы быть математикой ценностных значений, в которых значение «истинно» соответствовало единице, а значение «ложно» – нулю. Оказалось, что ее система 1 и 0 подходила и для обозначения положений переключателя, а в эпоху чипов – состояний путей транзисторов Федерико Фаджина. В Булевой алгебре любое число, буква или символ могли быть преобразованы в набор битов вида 1 или 0, выстроенных в байты размером от 4-х до 128-ми битов для еще большей точности (так, 8-битные процессоры превратились в 128-битные, что повысило их функциональность).
Комбинация технологии транзисторов (особенно в форме интегральных микросхем) и Булевой алгебры стала толчком для цифровой эры, частью которой мы до сих пор являемся.
Процесс применения всех аппаратов, рассчитанных на использование вакуумных трубок, к транзисторам (наравне с постоянно возникающими новыми устройствами) был закончен лишь наполовину, когда появились интегральные микросхемы и запустили процесс переноса функций заново. Идея Джека Килби, план Роберта Нойса и планарный процесс сделали транзистор более простым, легким для производства и, что важнее всего, масштабируемым, т. е. воспроизводимым в больших объемах, и все это на одном чипе. Теперь гонки развернулись за применение новой технологии интегральных микросхем (или, по крайней мере, ее основополагающего процесса) во множестве электронных устройств. Индустрия полупроводников довольно быстро распалась на куски в погоне за этими разными возможностями.
Существовало три пути, по которым было возможно движение. Дискретные устройства были продолжением одиночных линеек транзисторов, которые создавались уже на тот момент (такие, как светоиспускающие диоды для панелей контроля). Линейные устройства использовали технологию полупроводников для конструирования аналоговых чипов (таких, как усилители для высокотехнологичных аудиосистем). На этом поприще свои гениальные способности проявил Боб Видлар. Наконец, существовали интегрированные устройства – интегральные микросхемы, которые изменили мир.
Также производители начали задумываться над материалом для конструирования чипов и способами их проектирования. Большая часть ранних транзисторов была сделана из германия – легированного изоляционного материала. Германий особенно устойчив к разрядам, радиации и теплу, что делало его подходящим для применения в авиакосмической и военной промышленности. К сожалению, кристаллы германия сложно вырастить без примесей и до определенного диаметра, нужного, чтобы затем разрезать его на пластины и чипы. Вот почему коммерческая чиповая индустрия остановила свой выбор на кремнии, который на сегодняшний день выращивается в цилиндрических кристаллах диаметром до 14-ти дюймов.
Из того, что кремний занимал доминирующую позицию в чиповой индустрии на протяжении последних тридцати лет, одержав победу над другими претендентами (например, искусственным сапфиром), вовсе не следует, что он сможет держать первенство вечно. Нанотехнологии могут снять вопрос о примесях и даже устранить необходимость выращивать огромные кристаллы.
Как мы уже успели увидеть, существуют два основных метода построения интегральных микросхем, различаемые по порядку и форме, в которых поочередно выкладываются кремниевые, не-кремниевые (эпитаксиальные) и металлические слои. Биполярный метод существенно более быстрый, а сам продукт более устойчив к теплу и радиации. С помощью метода металла-оксида-полупроводника (МОП) можно получить более хрупкий чип, который тем не менее способствует более высокому уровню интеграции, сто?ит меньше и более удобен для сборки из многих слоев. Хотя МОП выиграл эту гонку (и в ее ходе вывел нескольких участников, например, работодателя Боба Нойса – Philco – из игры), биполярный метод не исчез, заполнив собой определенную нишу. Как вы можете вспомнить, при своем создании Intel задумывалась как компания по производству биполярных транзисторов, так как Fairchild оставил позади большинство своих конкурентов, но лишь затем, чтобы провести всех и стать главным первопроходцем в создании МОП.
Новый вопрос, вставший перед молодыми компаниями по производству чипов, в частности, перед группой компаний, возглавляемых создателями Fairchild (называемых Fairchildren – дети Fairchild), сводился к следующему: какую разновидность чипа нам нужно сконструировать?
Перед ними стояло несколько возможностей. Логические чипы выполняют операции с входящими данными, которые определяются инструкциями программного обеспечения, управляющего компьютером или другой системой. Вместе они составляют центральный процессор (ЦП). Классическим логическим чипом был чип ТТЛ (транзистор-к-транзистору-логика).
Чипы памяти имеют два вида: чипы ЗУПД (запоминающее устройство с произвольным доступом; RAM) сохраняют большой объем данных на долгий период времени. Они являются полупроводниковым эквивалентом дисковой памяти. Эту память они по большей части вытеснили со всех запоминающих устройств (кроме самых больших) уже с момента появления второго поколения iPod компании Apple, заменивших крошечные магнитные диски на чипы с флеш-памятью. Заметим, что чипы ЗУПД не только потрясающе увеличили свою вместимость за последние пятьдесят лет (они являлись основой первоначального графика Гордона Мура), главным образом из-за того, что их было легче всего конструировать. Эволюционировала также и их структура – от статических ЗУПД (SRAM), которым требуются целых шесть транзисторов на один чип и которые сохраняют остаточную память даже после ее очистки, – до динамических ЗУПД (DRAM), которые не имеют себе равных по компактности, но сбрасывают всю информацию из памяти при выключении, и до флеш-памяти, которая является разновидностью памяти, предназначенной только для чтения, но с возможностью редактирования. Это обеспечило ей частоту применения, так как ее легко извлечь и переписать, а также сохранить память без очистки данных. Флеш-память наиболее популярна среди производителей карт памяти, или флеш-накопителей.
Обычно с чипов постоянно запоминающего устройства (ПЗУ, или ROM) можно считать информацию, но не так просто что-либо записать на них. Как правило, чипы ПЗУ содержат в себе оперативную память системы, включая ряд алгоритмов, по которым она выполняет различные задания, в их числе и правила оперирования данными, поступающими от ЗУПД и внешних запоминающих устройств. Для создателей чипов ЗУПД особенную трудность всегда представлял вопрос о возможности изменения этих алгоритмов после встраивания чипа в устройство без последующего его извлечения и замены. Решением этой проблемы стало изобретение чипов ЗУПД с возможностью извлечения (при помощи техники применения ультрафиолетового излучения) и перепрограммирования в процессе создания приборов.
Все эти чипы могли быть в изобилии найдены на главной печатной материнской плате мини-компьютеров 1960–1970-х годов. Другие чипы в еще больших количествах помогали управлять мощностью и движением данных по ЦП.
Тогда инженеры стали задаваться новыми вопросами. Зачем нужно так много чипов, если, благодаря Закону Мура, они становятся все меньше и мощнее? И, что еще важнее, почему все они должны быть монолитными, исполняющими лишь одну функцию? Если мы можем интегрировать один вид микросхем, почему нельзя попробовать сделать то же самое с другими видами?
Таким образом, в конце 1960-х началась работа по перенесению функций почти всех чипов с материнской платы компьютера на разные участки одного чипа, снабженного металлическими каналами, заменившими проводные соединения на печатной плате.
Результатом стал микропроцессор Хоффа-Фаджина-Шимы-Мэйзора, спонсированный компанией Intel, которая уже на протяжении сорока лет является его покровителем и главным разработчиком. К счастью нашего повествования, история Intel (после десятилетия, проведенного в непростом мире накопителей памяти и логических микросхем) во многом связана с этим микропроцессором, величайшим изобретением индустрии полупроводников (и, возможно, всей современной индустрии). Именно поэтому фокус истории смещается с ранних достижений на широчайшем поле полупроводниковых устройств на череду постоянных и предсказуемых видовых усовершенствований новых моделей микропроцессоров: 286-й, 386-й, 486-й, Pentium и т. д.
По крайней мере, так происходило до середины нулевых. Тогда возникли две силы, ставшие причиной разделения линейки микропроцессоров Intel и ее последующего разветвления. Одной из этих сил стала цена: попытки найти оправдание продолжавшемуся изготовлению монолитных процессоров, закрепляющих каждый отдельный микропроцессор на одном чипе, стали слишком дорогими и непривлекательными для покупателей. Другой была «торговая схизма»: с одной стороны, компании интернет-инфраструктуры (например, Cisco) и компании по производству суперкомпьютеров все еще хотели обладать самыми мощными процессорами. Производство высокоэффективных чипов, созданных для этих компаний фирмой Intel, в частности линейка Itanium, продолжало идти по колее, проложенной Законом Мура.
С другой стороны, им был противопоставлен рынок мобильных устройств, готовый пожертвовать производительностью ради удобного размера и прежде всего низкого энергопотребления. Здесь компания ARM взяла бразды правления в свои руки, оставив Intel далеко позади.
Из-за высокого интереса, уделяемого сегодня микропроцессорам и флеш-памяти, легко забыть, что все прочие интегральные, дискретные и линейные устройства, многие из которых были созданы еще в XIX веке, до сих пор производятся в изобилии, в большинстве случаев даже больше, чем когда-либо ранее. Чипы и сейчас являются сердцем любого электронного аппарата. Мы просто перестали обращать на них внимание. И уже ждут своего появления в скором будущем (возможно, всего через несколько десятилетий) абсолютно новые виды переключателей – одинарные транзисторные элементы, молекулярные переключатели, квантовые точки, которые могут стать началом эры постцифровой электроники.
Данный текст является ознакомительным фрагментом.