Математика
Математика
Самое первое отчетливое воспоминание моей жизни по иронии судьбы оказалось связано с математикой. Мне шесть лет, я сижу с отцом за письменным столом, и он занимается со мной, пытаясь объяснить как измеряется площадь треугольника, круга и других фигур. К тому времени я уже хорошо читал и считал, умел немного писать, и ему казалось, что пора приобщить меня к более сложным математическим понятиям.
«Вот смотри» — говорит отец — «площадь треугольника равна половине произведения длины основания на высоту, а площадь круга равна „пи“ на „р“ в квадрате». «Папа» — отвечаю я — «ты мне пишешь какие-то буквы, но не говоришь что такое площадь». В итоге все закончилось моим плачем и папиным раздражением: он не был математиком и не мог объяснить мне, что площадь — это функционал на множестве измеримых фигур, обладающий определенными свойствами, да я и не воспринял бы тогда по крайней молодости лет такого объяснения. Однако я помню всю глубину своего непонимания и искреннее желание осознать, что же это за штука такая площадь, и почему она называется так же, как площадь Ленина в центре Полоцка, где мы тогда жили.
Когда я подрос и пошел в школу, я легко научился манипулировать буквенными и численными выражениями и вычислять площади, но вплоть до интернатских лет у меня при этом не возникало естественного детского вопроса: а что же такое площадь?
Мне кажется, что мозг ребенка, не испорченный еще потоком подчас бессистемных знаний, который накрывает его в школьные годы, готов к правильному восприятию математики, но это чувство обычно утрачивается с течением времени под влиянием различных обстоятельств или просто за ненадобностью.
Кстати, идея измерения путем сопоставления с какими-то стандартными объектами, которая, по-видимому, и должна лежать в основе объяснений ребенку понятий длины и площади, прекрасно реализована в замечательном советском мультфильме «38 попугаев», который я считаю выдающимся примером ненавязчивого учебно-методического фильма по математике.
Я вновь столкнулся с математикой буквально через год, играя с друзьями в классики на разрисованном мелом асфальте. Не помню, кто принес в наш двор задачу-головоломку: как обвести заклеенный конверт (прямоугольник с нарисованными диагоналями) карандашом так, чтобы при этом не пройти дважды ни по одному ребру картинки. Мы все как один бросили классики и стали чертить мелом на асфальте бесконечные конверты. Однако у нас ничего не получалось. При этом незаклеенный конверт легко поддавался такому обводу, а вот заклеенный — нет.
Я долго не мог забыть эту задачу, пока через три года кто-то из моих старших друзей не рассказал мне ее решения. Оказалось, что если такая обводка картинки возможна, то у всех вершин кроме конечной и начальной должно быть четное число входящих в них ребер, потому что, войдя в вершину по одному ребру, вы должны затем выйти по другому, стало быть, каждый проход ведет к обводке двух ребер, а это четное число. Нечетное число ребер может быть лишь у двух вершин, начальной и конечной, но у заклеенного конверта таких нечетных вершин четыре. Значит, задача не имеет решения.
Я так подробно пишу об этой хорошо известной задаче, потому что, во-первых, полностью понял тогда ее решение, а во-вторых, испытал совершенно исключительное чувство красоты и освобождения: поразительно, но оказалось, что не надо решать каждую такую задачу в отдельности, а можно изучить их все сразу, заметив то общее, что их объединяет: четность и нечетность числа ребер. Эта идея, идея сопоставления арифметического инварианта геометрической конструкции (как мы бы теперь сказали) меня совершенно поразила.
Потом, когда я начал заниматься в математическом кружке пятого класса в Таллине у замечательной учительницы Анны Аркадьевны, открывшей мне дверь в интригующий и загадочный мир математики, я часто встречался с этой идеей в различных ситуациях, но первое впечатление, связанное с задачей о конверте, запомнилось мне на всю жизнь.
Новый импульс к занятиям математикой, который я испытал, совпал по времени с нашим переездом в Калининград. Я учился тогда в восьмом классе и очень интересовался радиоэлектроникой: собирал сам транзисторные приемники, упаковывая их в миниатюрные мыльницы, и эти приемники работали. Как-то отец купил мне ламповый усилитель в наборе, я, тщательно сверяясь со схемой, собрал его, а затем решил присоединить к нему колебательный контур, чтобы получить настоящий радиоприемник. Я купил ферритовый стержень, намотал на него моток проволоки и подсоединил к усилителю через переменный конденсатор. Каково же было мое удивление, когда в приемнике послышался бодрый дикторский голос с типичным западным акцентом: я попал неожиданно на волну «Голоса Америки»!
Мне хотелось продолжить эти занятия на более содержательном уровне, и я пошел в Калининградский городской дом пионеров, чтобы записаться в соответствующий кружок, но тот был совершенно переполнен желающими, и мне отказали. Тогда я с горя записался в кружок вычислительной техники, который оказался на поверку кружком по математике, причем очень хорошего уровня: здесь работали преподаватели Калининградского политехнического института, и здесь я очень многому научился, познакомившись с совершенно новым для себя классом задач и методов.
До сих пор помню, какое впечатление произвела на меня одна естественная несложная геометрическая задача, рассказанная преподавателем: можно ли на бесконечной клетчатой бумаге провести через данный узел прямую, не пересекающую других узлов решетки?
Решение здесь вновь сводится к арифметике: если бы все прямые, выходящие из данного узла, пересекали бы обязательно какой-либо другой узел, то тангенсы углов в прямоугольном треугольнике, образованные отрезком такой прямой и перпендикулярными линиями сетки, проходящими через эти узлы, были бы обязательно рациональными числами, но ведь можно провести прямую через данный узел так, что тангенс соответствующего угла будет иррациональным, и такая прямая, стало быть, других узлов не пересечет.
Занятия в кружке шли очень интенсивно, и мой математический уровень под влиянием этих занятий заметно вырос, а главное, я почувствовал настоящий вкус к решению задач, меня по-прежнему завораживали неожиданные связи между различными методами, комбинаторными, геометрическими и числовыми, которые порой совершенно неожиданным образом объединялись при решении конкретной задачи.
Система олимпиад в Калининградской области была прекрасно отлажена, и в 1965 году я прошел по всей выстроенной олимпиадной цепочке, победив последовательно на школьной, районной и областной олимпиадах. Вместе со мной в областную команду, едущую на Всероссийскую физико-математическую олимпиаду, также попал мой приятель по кружку Боря Ровнер, и руководство команды приняло решение взять вместо девятиклассников двух способных учеников восьмого класса.
Это решение оказалось правильным. Боря получил на Всероссийской олимпиаде диплом второй степени по физике, а я — аналогичный диплом по математике, и в результате впервые Калининградская областная команда в борьбе с другими областными и республиканскими командами вошла в почетную десятку.
С удовольствием вспоминаю проведенное в Москве, в МГУ и в МФТИ олимпиадное время: здесь я впервые услышал лекцию А. Н. Колмогорова о комплексных числах, вживую увидел И. Г. Петровского, вручавшего нам дипломы, и познакомился с другими победителями по математике, которыми стали Андрей Суслин и Игорь Кричевер, разделившие со мной диплом второй степени, и Мишей Бощерницаном, получившим диплом первой степени. (Суслин и Кричевер сейчас — крупнейшие математики с мировым именем, что же касается Миши, то он давно живет в Израиле и является ярким специалистом по теории динамических систем.)
В качестве приза я получил увесистую стопку книг по математике, которую поленился тащить домой и сдал в букинистический, чего до сих пор не могу себе простить, ведь в этой пачке находилась книга Спрингера «Римановы поверхности», от которой я и сейчас бы не отказался, и многое другое.
После олимпиады я поступил в Ленинградскую физико-математическую школу-интернат номер 45, и начался совсем новый период в моей жизни, о котором также немного рассказано в этой книжке.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Глава 2. Как воспитать математика
Глава 2. Как воспитать математика В середине 1960-х профессор Гаральд Натансон предложил одной из своих студенток, которую звали Люба, место в аспирантуре. Нельзя сказать, что этот шаг дался ему легко. Женщин в аспирантуру тогда принимали с большой неохотой, подозревая их в
Математика в экономике
Математика в экономике В феврале 1963 года отец получил послание от крупного экономиста академика Василия Сергеевича Немчинова. Собственно, письмо было коллективным, кроме Немчинова его подписал математик Виктор Михайлович Глушков, «молодое дарование», только что
Математика шага
Математика шага Ночные старты оказались для братьев Знаменских последними в сезоне 1934 года. Фибровым чемоданчикам со спортивной формой суждено было пылиться до следующей весны. Весь период московской слякотной погоды Серафим и Георгий отдыхали от тренировок.Но
Три математика
Три математика Коллеги по академии или по университету нередко видят Шарля Эрмита в обществе трех молодых математиков. Невзирая на свой преклонный возраст, маститый академик с поистине молодым задором предается жаркому спору, предмет которого порой уводит собеседников
Математика
Математика Когда Эйнштейн вернулся из Праги в Цюрих в июле 1912 года, один из первых визитов он нанес своему другу Марселю Гроссману – составителю конспектов, которыми пользовался и Эйнштейн, когда пропускал математические классы в Цюрихском политехникуме. По двум
Математика
Математика В 1496 году в Милан для чтения публичных лекций прибыл фра Лука Пачоли ди Борго Сан Сеполькро, величайший математик той эпохи, с которым Леонардо сразу же сдружился. Дружеская привязанность оказалась взаимной. Лука задержался в Милане лишь для того, чтобы
НИЗШАЯ МАТЕМАТИКА
НИЗШАЯ МАТЕМАТИКА Казалось бы всё ясно — Горбачёв определился. Но прошёл новый 1987 год, наступил январь — и никакого движения. В Москве в эти дни заседания Пятёрки шли чуть ли не каждый день. Мидовцы, полагаясь на поддержку Горбачёва, настойчиво пытались развязать
Математика как путь к свободе
Математика как путь к свободе Никакой передышки от учебы Анри, конечно, не получил, и вскоре ему в присутствии своего дедушки пришлось продолжить изучение латыни уже с гражданином Жозефом Дюраном — грамматистом и частным учителем. «Метаморфозы» Овидия были заменены
Математика
Математика Четверг, 12 авг. 1943 г.Впечатляюще выглядит он, стоя перед всем классом: большой, старый, в высоком стоячем воротничке, всегда в сером костюме, лысая голова в обрамлении седых волос. Речь у него какая-то странная, он то ворчит, то смеется. Терпелив, когда видит, что
Физика. Математика
Физика. Математика Говоря об этих областях знаний, мы остановимся не столько на каких-то конкретных достижениях Аристотеля и его последователей, сколько на самом подходе ученого к этим наукам.Аристотель полагал, что у всех наук одна цель — постижение истины. Математика и
Живая математика
Живая математика Я.И.Перельман в своей «Живой математике» утверждает, что в городе с пятидесятитысячным населением сплетня, которую услышали три человека, будет известна всем жителям менее, чем через два с половиной часа.Это все же теория, книжка. А жизнь, как известно,
Шахматы и математика
Шахматы и математика Очень давно одна знакомая рассказывала мне, как она сдавала устную математику на вступительных экзаменах в один из лучших вузов страны.Она была уже довольно известной шахматисткой, спорткафедра ей, видимо, помогала, но все же двойку получать было
Высшая математика
Высшая математика Наталья Юрьевна была женщина одинокая. И детей у нее не было. Была любимая работа – она преподавала высшую математику. Квартира была. Книги, театр. Подруги. И даже личная жизнь. Но совсем не та, что хотелось бы.— Если бы вы знали, Софья Аркадьевна, -
Глава 4: Математика для Индусов
Глава 4: Математика для Индусов Мне было всего лишь семнадцать лет, когда я закончил школу. До поступления в школу реслинга оставался ещё год. Стенозад сказал, что собирается поступать в Red River Community College на специальность "креативные коммуникации" я был заинтригован.