Глава II. К Северному полюсу – напролом![20]

We use cookies. Read the Privacy and Cookie Policy

Глава II. К Северному полюсу – напролом![20]

Я являюсь с докладом о том, что сделала техника по пароходному делу и действительно ли ее успехи дают теперь возможность пробраться в северные широты не при посредстве одних только собак и прежних способов, а напролом, при посредстве сильных машин, которыми человечество располагает для своих нужд.

Дело ледоколов, то есть таких пароходов, которые ломают лед, есть дело новое, но и все пароходное дело есть дело новое. Новое мы видим не в одном пароходном деле, а во всем, каждый день, и то, что казалось нам несбыточным вчера, оказывается осуществимым сегодня. Одно то, что мысль о возможности бороться с полярными льдами есть мысль новая, не может еще служить доказательством, что эта мысль неверная. Нужно считаться с цифрами, взвесить все, что дала техника в этом отношении, и тогда только решить вопрос: действительно ли льды Ледовитого океана могут быть взламываемы или же техника не доросла еще до этого?

Дело ледоколов зародилось у нас в России. Впоследствии другие нации опередили нас, но, может быть, мы опять сумеем опередить их, если примемся за дело. Первый человек, который захотел бороться со льдом, был кронштадтский купец Бритнев. Это было в 1864 г. Как известно, Кронштадт отрезан от сухого пути водою. Летом сообщение поддерживается на пароходах, зимою на санях, но в распутицу, когда нет пути по льду, а пароходы уже прекратили движение, бывали большие затруднения по перевозке грузов и пассажиров. Бритнев попробовал – нельзя ли пароходом ломать лед.

Он, в 1864 году, у парохода «Пайлот» срезал носовую часть так, чтобы она могла взбегать на лед и обламывать его. Этот маленький пароход сделал то, что казалось невозможным; он расширил время навигации осенью и зимой на несколько недель. После того как пароход «Пайлот» дал такие успешные результаты, Бритнев построил ему в помощь пароход «Бой», и движение в распутицу сделалось весьма сносным. Пароходы Бритнева, однако, были очень слабы, а потому все-таки были случаи, что сообщение с материком затруднялось; но когда, лет 8 тому назад, ораниенбаумская компания завела два парохода в 250 сил, сообщение с материком сделалось вполне обеспеченным.

Первые опыты с пароходом «Пайлот», который имел очень слабую машину, повели к предположению, что простая мысль продавливать лед корпусом въезжающего на него парохода не совсем практична, и в 1866 г. был испытан в Кронштадте проект инженера Эйлера, предлагавшего ломание льда посредством гирь. Была взята канонерская лодка, у которой в носовой части устроили гири и приспособили шесты с минами. Гири действительно проламывали лед, но у лодки не хватало силы машины, чтобы раздвигать разломанные куски. Таким образом, дело это оказалось совершенно непрактично. Мысль Бритнева, напротив, получила полное применение.

В 1871 г. стояла чрезвычайно суровая зима в Европе; вход в Гамбург замерз, и решено было построить ледоколы. Были посланы в Кронштадт инженеры, чтобы посмотреть, как Бритнев ломает там лед. Они купили чертежи Бритнева за 300 р., и, сообразно с этими чертежами, был построен для Гамбурга первый ледокол, предназначенный ломать лед посредством своего корпуса.

Затем гамбуржцы, увидев всю выгоду поддерживания навигации круглый год, не остановились на одном ледоколе и построили еще два. Ледоколы принадлежали гамбургскому правительству, которое, не желая конкурировать с частными лицами, не дозволяет ледоколам летом работать на буксировке судов и держит их без дела. Любек пошел вслед за Гамбургом, и затем все приморские порты Балтийского моря обзавелись ледоколами.

В 1891 г. для города Николаева построили ледокол. Почин в этом деле принадлежит Министерству путей сообщения, которое поняло всю важность открытия навигации этого порта круглый год. Оно нашло денежный источник, чтобы покрыть расходы по постройке ледокола для Николаева. Затем, в 1892 г., Морское министерство построило ледокол для Владивостокского порта. С тех пор пароходы Добровольного флота посещают Владивосток круглый год.

Первый ледокол для Владивостока оказался слаб, мал по своей силе, и ему приходилось ежедневно работать, чтобы поддерживать прорубленный им канал. Чтобы устранить этот недостаток, был заказан другой ледокол, немного больше первого, при котором сообщение с Владивостоком во всякое время года будет обеспечено без непроизводительной затраты работы. Новый ледокол в состоянии безостановочно идти сквозь тот лед, которым покрывается Владивостокский рейд и Золотой Рог. Затем Министерство путей сообщения завело для Саратова ледокол в 1500 сил и ледокольный паром такой же силы. Там, с нынешней зимы (1896/1897 гг.), перевозятся поезда через Волгу круглый год.

Когда начали строить Великий Сибирский путь и возник вопрос о том, что постройка пути вокруг Байкала вызывает большие затраты, то Министерство путей сообщения решило построить ледоколы и для Байкала. За образец были взяты ледоколы, имеющиеся на озере Мичиган. Главная особенность этих ледоколов заключается в том, что в передней части корабля делается винт. Польза такого приспособления открыта в Америке случайно.

Один капитан ледокола, встретив большой торос и не имея возможности побороть его, взял на буксир, и при этом оказалось, что струя воды от винта стала вымывать нижние льдины, и торос распался. Вероятно, нижние льдины очень плохо припаяны одна к другой, вследствие чего струя воды выворачивает их со своих мест. Этот опыт дал американцам идею сделать у ледокола передний винт, и я сожалею, что не знаю имени того инженера, который схватил и разработал эту мысль.

Ледокол для Байкала сделан согласно последнему слову науки: у него в корме два винта, а в носу один винт. Я не сомневаюсь, что он в состоянии побороть лед озера Байкал и в хороших руках будет делать свое дело. На рисунке представлен пароход с передним винтом перед торосом, который надо преодолеть. Действие переднего винта следующее: идя обыкновенным сплошным льдом, передний винт, всасывая воду из-подо льда, образует под ним пустоту и помогает ему обламываться под давлением набегающего корпуса ледокола. Когда ледокол подойдет к малому торосу, то он его поборет своим ходом, но если торос так велик и крепок, что ледокол не может побороть его ходом и остановится, то передний винт переводится на задний ход, и тогда струя воды, отбрасываемая на нижние льдины тороса, выворачивает их и отбрасывает вперед.

Инженер Рутковский, посланный Министерством путей сообщения осмотреть ледоколы в Америке, пишет следующее о действии ледокола «St. Marie», имеющего 3000 сил и снабженного передним винтом:

При остановках пароход останавливался, упираясь в сплошной лед. Для того чтобы пустить его опять в ход, не требовалось подавать его назад. Как только пущен был в ход передний винт, замечалось на льду под ногами некоторое слабое колебание в расстоянии до 5 сажен от носа парохода, и затем, при действии заднего винта, пароход начинал двигаться, сначала крошить лед перед собою, а потом разламывать его на большие льдины, выбрасываемые по бокам парохода. При этом получалось впечатление, как будто бы пароход поднимался на лед и проламывал его своим весом.

Мне передавал капитан судна, что в 1895 г. лед был тоньше обыкновенного, а в 1894 г. достигал 2,5 фута, и пароход мог свободно идти через лед при этой толщине. Капитан судна и сопровождавший меня инженер компании, строившей судно, сообщали, что пароход не встречает никакого затруднения при проходе сплошного льда даже 2,5 фута толщиною, но что больше затруднений приходится испытывать, когда лед из озер (Мичиган и Гурон) позднею весною вгоняется штормами и течением в узкий пролив, где образуются загромождения и ледяные валы до 20 футов и более.

В таких случаях, говорит капитан, приходится проходить через такие загромождения в два приема, то есть если пароход не может сразу пройти через нагроможденные и смерзшиеся льдины, то они направляют сначала струю переднего винта для разрыхления массы и затем, подавая пароход назад, вторично проламывают препятствия. Эта операция не могла быть мною наблюдаема за покрытием пролива сплошным льдом.

Месяц тому назад в Финском заливе пробовали новый ледокол «Надежный», построенный в Копенгагене для Владивостокского порта, и оказалось, что этот ледокол, не имевший переднего винта, прекрасно ломал лед, идя носом вперед, но еще лучше он ломал лед, идя кормою вперед, что подтверждает идею носовых винтов, даже при следовании через сплошной лед.

Вот в каком положении находится дело ледоколов. Посмотрим теперь, можно ли с успехом применить эти ледоколы к плаванию в Ледовитом океане. Лед можно разделить на ледяные горы глетчерного происхождения, ледяные поля и торосы.

Наш сибирский берег низмен и не дает глетчеров[21] Ледовитому океану. Никто из исследователей не встречал ледяных гор к северу от нашего сибирского берега; их не видели с «Жаннетты» и их не встречал Нансен.[22] Ледяные горы следуют вдоль берегов Гренландии, и в некоторые месяцы их очень много у Ньюфаундлендской банки, куда они приносятся Лабрадорским течением, а в остальной части Ледовитого океана их нет.[23] Ледяные горы по своему размеру бывают так велики, что с ними силою кораблей бороться невозможно; их должно обходить.

Ледяные поля могут состоять изо льда одногодового и льда старого. Вейпрехт, в своем классическом исследовании «Die Methamorphosen des Polareises»[24] выводит зависимость между количеством мороза и толщиною ледяного покрова. На основании наблюдений в 3 различных местах он составил таблицу, в которой количество мороза обозначено градусо-днями; приняты градусы Реомюра. Ниже приводим следующие цифры:

Данные эти нанесены мною на чертеже, который служит для вывода предельной толщины льда. Из этой таблицы и диаграммы мы видим, что вначале замерзание идет весьма быстро, а потом чрезвычайно медленно. Первые 500 градусо-дней мороза дают толщину льда в 63 см, а последние 500° лишь 5 см.

Вейпрехт считает, что среднее количество мороза в Ледовитом океане 4500 градусо-дней.

Таяние льда происходит иначе, чем замерзание, оно не только не уменьшается по мере убыли льда, но даже увеличивается, в особенности с того момента, когда лед становится порист и вода уходит под лед. По Вейпрехту, в самой холодной части Ледовитого океана, за летнее время, лед может уменьшиться в своей толщине на 1–1,5 м. Расчет предельной толщины льда по системе Вейпрехта делается следующим образом. Предположим, что в Ледовитом океане количество мороза равно 5000 градусо-дням и таяние – одному метру. Согласно диаграмме, при 5000 градусо-днях в первую зиму образуется ледяной покров в 209 см, в лето стает 1 м и, следовательно, останется 109 см, что соответствует 1350 градусо-дням. Прибавив к этой цифре 5000 градусо-дней, получим 6350, а этой величине соответствует намерзание в 234 см. Эту толщину льда будем иметь в конце второй зимы. Продолжая вычисление таким же образом, получим предельную толщину при заданных условиях 260 см. Это и есть толщина полярного сплошного льда по Вейпрехту.

На «Фраме» количество мороза оказалось более, чем то предполагает Вейпрехт. В первую зиму они получили 5130 градусо-дней, во вторую – 6130 и в третью – 5300. В среднем они имели 5520 градусо-дней.[25]

Количество таяния у Нансена обозначено лишь для одного лета и оказалось в 1 м. Если принять таяние в 1 м, а количество мороза в 6000 градусо-дней, то получим, по формуле Вейпрехта, наибольшую толщину льда 3,05 м (10 футов). Нансен, однако, иногда встречал лед в 14 футов, а командир «Жаннетты» Де-Лонг упоминает о льде в 12 футов. Не происходит ли это от того особого явления, которое наблюдал Нансен? Он заметил, что пресная вода, образовавшаяся от таяния льда, уйдя под лед, вследствие прикосновения к соленой воде, имеющей температуру –1,5 °C, вновь намерзает и увеличивает толщину льда снизу в то время, когда наверху происходит обильное таяние его.

Следует ли это явление считать обыкновенным или исключительным? Ответ на это дать весьма трудно, но надо думать, что для такого явления необходимы исключительные условия: надо, чтобы внизу был покой и отсутствие течений, которые могли бы перемешивать тонкий слой пресной воды, сбегающей со льда, с соленой, и тем понизить точку замерзания.

Происходит ли такое явление повсюду или нет, сказать не могу, но, во всяком случае, сплошной лед в 12 футов наблюдался, и расчеты наши надо вести на лед такой толщины. Рассмотрим, какую силу надо применить, чтобы взламывать лед в 12 футов толщины. В настоящее время по вопросу о ломке льда есть уже некоторый материал, по которому можно найти зависимость между толщиною сплошного льда и потребною для его разломки силою машины. Я обратился с этим вопросом к нашему ученому, морскому инженеру В. И. Афонасьеву, который дал мне следующую формулу I.H.P = 2,5v ? d2.

I. H. P. есть индикаторная сила машины, потребная для безостановочного взламывания сплошного льда, v — скорость движения в узлах, d — толщина сплошного льда в дюймах.

По этой формуле, для безостановочного движения со скоростью одного узла требуется:

при 2-футовом льде – 1400 сил

при 4-футовом льде – 5760 сил

при 6-футовом льде – 13000 сил

при 8-футовом льде – 23 000 сил

при 10-футовом льде – 36000 сил

при 12-футовом льде – 52 000 сил

По этому же предмету я спросил завод Армстронга, строивший ледокол для озера Байкал. Завод этот высчитывает, что для взламывания льда большой толщины потребуется гораздо меньше сил, чем по формуле В. И. Афанасьева, но надо сказать, что завод Армстронга говорит о ледоколах с передним винтом, тогда как В. И. Афонасьев основывал свои выводы на опытах с ледоколами, не имеющими переднего винта. Чтобы не ошибиться, примем расчеты В. И. Афонасьева, согласно которым для прохода сплошного льда в 12 футов надо 52 000 индикаторных сил.

Кроме сплошного льда, ледоколу в Ледовитом океане придется иметь дело с торосами. Торосы происходят от давления льда. Если представить себе, что море покрыто сплошным льдом, то ветер, дующий на его поверхность, стремится сдвинуть его по направлению движения. При огромной поверхности океана давление это, при значительной силе ветра, бывает так велико, что лед не в состоянии его выдержать, и он со страшным шумом взламывается и начинает громоздиться, образуя из глыб гряду, идущую зигзагами, поперек движения ветра. Лед затем взламывается в другом месте, образует новые гряды, и так как ветры дуют с разных сторон, то гряды торосов, как паутина, покрывают поверхность океанов. Они-то и составляют главное препятствие к санному путешествию по льду.

На образование торосов влияют также приливы и отливы, и Нансен подметил в этом отношении некоторую зависимость. О торосах существовали преувеличенные известия. Путешественникам приходилось перелезать через них, а потому они им казались очень высоки. Нансен по этому поводу в своем сочинении («Дальний север», стр. 243, т. I, английское издание) пишет следующее:

В отчетах о полярных экспедициях часто можно встретить описание торосов в 50 футов высотою. Это сущие сказки. Авторы таких фантастических описаний измерений не производили. Во все время нашего следования со льдом и нашего путешествия по льду я только один раз встретил торос вышиною более 23 футов. К несчастью, я не имел случая смерить его, но думаю, что могу с достоверностью сказать, что он был около 30 футов высоты. Все самые высокие торосы я обмерял; они были высотою 18–23 фута, и могу с достоверностью утверждать, что торосы, образуемые из морского льда, высотою более 25 футов суть очень редкое исключение.

О глубине тороса можно судить по вышине его над водою. Торос представляет из себя кряж гор с некоторыми вершинами, и 18–23 фута, вероятно, есть высота вершин, а не всего кряжа. Предположим, однако, чтобы не ошибиться, что кряж тороса имеет вышину 18 футов, и зададимся вопросом, как глубоко такой торос простирается вниз. Вейпрехт говорит, что в морском льде отношение высоты надводной части к подводной изменяется в пределах 1: 10 и 1: 3; в среднем он принимает 1: 5.

Если допустить, что набивной лед имеет равную толщину, то вышине 18 футов над водою будет соответствовать 90 футов под водою. Но по отношению к торосу это не так. Торос в сечении имеет вид треугольника. Допустим, что стороны его идут под углом 45°; получим, что при высоте 18 футов и основании 36 футов площадь треугольника будет 324 кв. фута. Для поддержания веса этого льда следует под ним нагромоздить треугольник, площадью в 5 раз большею, то есть 1620 кв. футов.

Такой треугольник, при той же покатости боков, будет иметь высоту 40 футов и основание 80 футов. Прибавим 12 футов толщины сплошного льда, и мы получим глубину тороса в 52 фута. Сплошной лед, представляющий связь тороса, будет в центре нагромождения претерпевать большое давление сверху, а по бокам будет большее давление снизу. Поэтому поверхность льда примет выгнутую форму, что и наблюдал Нансен. Когда начинается таяние, то во впадинах у тороса скапливается вода. Наибольшей глубины торос, вероятно, достигает в момент своего образования, но затем лед начинает разравниваться.

Вейпрехт (стр. 64) свидетельствует, что иногда при полном спокойствии льда сверху слышно его перемещение внизу. Это происходит, вероятно, вследствие движения воды под ледяным полем. Разность движения ледяного поля и воды, на которой оно лежит, то есть течение воды, есть та сила, которая тревожит и разравнивает нижние глыбы льда.

Есть указания и у Нансена, и у Де-Лонга, что на 30 футах опущенный лот ударял по глыбе льда, и, кроме того, есть указания, что ледяные поля своими торосами становились на мель на 30 футах. По всем вышеуказанным доводам надо думать, что нагромождение глыб внизу против торосов до 30 футов есть дело заурядное и что в некоторых случаях подводная глубина торосов достигает 40 и 50 футов.

Является вопрос: может ли ледокол, имеющий силу идти сплошным льдом в 12 футов, разбить торос в 25 футов высотой? Инженер Рутковский приводит свидетельство, что на Мичигане ледокол в 3000 сил проходил торосы в 20 футов. Если допустить, что это преувеличение, что торос был 15 футов и крепость его пропорциональна квадрату его высоты, то и тогда нам для разбивания тороса в 25 футов потребуется менее, чем утроить силу, то есть применить к разбиванию тороса 8300 сил, то есть гораздо меньше, чем потребуется для разламывания сплошного льда в 12 футов.

Торосы озера Мичиган суть торосы одногодовые, тогда как в Ледовитом океане могут встретиться торосы, образовавшиеся несколько лет назад. Является вопрос: с годами нижний лед в торосе крепчает или нет? Ответ на этот вопрос мы можем найти в той же книге Вейпрехта (стр. 147). Он в зимнее время опустил глыбу льда на глубину 5 м, и оказалось, что в первый день произошло нарастание льда в 1 см. Это явление весьма понятно: глыба перед погружением имела температуру ниже нуля, и температура эта, передаваясь к поверхности глыбы, должна была произвести некоторое намерзание. В последующие дни намерзло уже очень немного, а затем глыба стала разрыхляться, вероятно, вследствие вымывания соли.

В первые дни по образовании тороса происходит спайка льдин между собою, и на эту спайку расходуется весь тот холод, который льдина принесла с собою. В последующее затем время спайка льдин между собою не увеличивается, а потому подводные глыбы льда в торосе с годами не крепчают, а слабеют, и если торос настоящего года на Мичигане может быть размыт действием винта, то, без сомнения, торосы минувших лет на Ледовитом океане так же могут быть размыты действием струи воды от винта.

Если торосы так слабы, что их можно размывать струею воды то, следовательно, льдины не лежат плотно одна к другой. Торос нельзя сравнить с правильною кирпичною кладкою, его, скорее, можно уподобить груде кирпича, с тою, однако, разницею, что груду кирпича подвинуть весьма трудно, тогда как груду льдин, плавающих в воде, подвинуть весьма легко. Лед имеет такую малую плавучесть, что он в воде почти уравновешен; под давлением корпуса глыбы его будут расступаться в стороны и пропустят судно.

Если бы нам пришлось прокладывать себе дорогу в сплошном льде в 30 футов, то мог бы явиться вопрос: куда денется лед, который мы будем вымещать корпусом корабля? При набивном льде такого вопроса явиться не может, ибо между глыбами есть промежутки, которые допустят спрессование, и, кроме того, часть глыб пойдет, может быть, под дном судна. Отсюда можно заключить, что торосы не представляют из себя чего-то непреодолимого.

Для ломки полярного льда в 12 футов мы высчитали, что потребуется 52 000 индикаторных сил. На первый взгляд, сила эта представляется до несоразмерности большой, но в прошлом (1896) году, как раз в это самое время, я ехал по Атлантическому океану из Нью-Йорка в Ливерпуль на пароходе «Campania», машина которого развивает 28 000 индикаторных сил; следовательно, два таких парохода могут прорезать лед в 12 футов, и, значит, сила эта не есть чрезвычайная. Если бы я сказал, что хочу сдвинуть Альпы, то вы могли бы усомниться, ибо таких машин еще нет, но ведь не Альпы же сдвинуть мы хотим машиною.

Я говорю о величине, которою мы на практике пользуемся. Я говорю о пароходе, который благополучно плавает и перевозит своих пассажиров из года в год. Чтобы пройти Ледовитый океан зимою и бороться с толстыми льдинами, пароходу нужно иметь 52 000 индикаторных сил. Но можно пройти Ледовитый океан не зимою, а позже, когда лед немного стает и будет на 1 м тоньше.

Затем есть еще обстоятельство, чрезвычайно уменьшающее крепость льда, – это его растрескивание. Лед имеет чрезвычайно оригинальную аномалию. Все тела от теплоты расширяются, а от холода сжимаются. Морской лед имеет это свойство лишь ниже –15°, а от –15° до 0° он сжимается при нагревании. Пока стоит мороз и происходит намерзание, лед трескается, но не очень, а когда температура поверхности поднимается до –2°, начинается сильное растрескивание льдин.

Предположим, что в конце зимы лед имеет толщину 2 м и что на поверхности он имеет температуру –38°, внизу температуру воды –2°, а в середине среднюю температуру –20°. При этом условии верхний лед находится в состоянии, соответствующем объему 1083, средний лед – 1086, а нижний – 1077. Допустим теперь, что началась оттепель и поверхность льда, толщиною в несколько дюймов, приняла температуру, близкую таянию –2°. Этой температуре соответствует объем 1077; следовательно, лед на поверхности должен был сжаться почти на 1 %, в то время как средняя толща осталась в прежнем объеме. Это обстоятельство вызывает трещины на поверхности, и Вейпрехт говорит (стр. 47), что весною нельзя найти и 1 кв. м поверхности льда без трещин.

Лед пресноводный имеет ту же аномалию, как и лед морской воды, но температура небольшого объема находится ближе к 0. Чтобы проследить явление растрескивания, я нынешнею зимою сделал наблюдения над несколькими глыбами льда. Пока были морозные дни, поверхность льда оставалась цельная, но после двух дней оттепели поверхность льдины растрескалась и приняла вид мозаики, так что не осталось цельного места, на которое можно было бы поместить ладонь. Растрескивание льда значительно убавляет его крепость и уменьшает количество силы, потребной на его взламывание.

Кроме растрескивания льда, вследствие перемены температуры воздуха есть еще другое обстоятельство, уменьшающее крепость соленого льда. Как известно, при замерзании соленой воды соль выделяется, но часть ее механически запутывается во льду. Пока температура льда низка, до тех пор запутавшаяся соль остается во льду, но когда температура льда повысится, то соль начнет вымываться из льда, и являются тонкие канальцы. Вейпрехт говорит (стр. 82), что в середине мая они могли прорубить во льду углубление и уже на 2 1/2 м встречали влагу. 25 мая (по новому стилю) уже на глубине 1/2 м встречали влагу, а через 3 дня влага показалась даже на 1/4 м от поверхности.

По мере того как лед тает и солнечные лучи начинают пробивать всю толщину, во льду появятся сквозные канальцы. Появление их обнаруживается тем, что вся вода с поверхности уйдет под лед. Путешественники по полярным льдам свидетельствуют, что вода в известное время лета уходит под лед, и, следовательно, с этого времени надо считать, что весь лед пробит каналами и, разумеется, значительно ослаблен в своей крепости.

Надо еще иметь в виду, что лед, образовавшийся из соленой воды, имеет бо?льшую вязкость, но значительно меньшую крепость, чем лед пресноводный. Я не встречал исследований по этой части, а потому сам, при содействии доктора медицины Шидловского, произвел некоторые опыты над изломом ледяных брусков. Не привожу здесь подлинных цифр наших наблюдений, ибо они производились при недостаточно точной обстановке. Опыты показали, что лед из раствора поваренной соли удельного веса 1026, при температуре около –5 °С, в три раза слабее на излом, чем лед пресноводный. Полагаю, что излишняя вязкость соленого льда с избытком компенсируется меньшею крепостью и что, в общем, можно признать, что лед морской воды слабее пресноводного.

Снежный покров значительно затрудняет разломку льда ледоколом. Это происходит, вероятно, вследствие того, что корпус ледокола не так хорошо скользит по снегу, как по льду, и что много силы бесполезно тратится на упрессовку снега. В июне месяце большая часть полярного льда уже оголилась от снежного покрова, и, следовательно, этого препятствия, с которым приходится считаться ледоколам в зимнее время, летом не существует.

Все вышесказанное приводит меня к заключению, что с 1 июня (по новому стилю) полярный лед хотя и имеет свою полную толщину, но значительно растрескался как сверху, так и снизу, и ломка его потребует гораздо меньшего усилия, чем ломка льда, не имеющего никаких трещин. Судя по опытам на кронштадтских ледоколах, 1 фут 4 дюйма весеннего льда равны по крепости лишь 1 футу льда осеннего, так что при расчете силы можно сбавлять 25 % с толщины. Для того чтобы не ошибиться, примем эту величину в 20 %. Позже 1 июня лед Ледовитого океана становится все слабее и слабее, пока с началом морозов он не станет вновь крепчать. Август месяц надо признать по отношению к разламыванию льда самым выгодным.

К числу обстоятельств, облегчающих доступ к Северному полюсу, надо причислить тот факт, что, по Вейпрехту и другим авторитетным отзывам, 1/3 пространства Ледовитого океана в летнее время совершенно открыта ото льда.[26] Нансен не противоречит этому указанию, и «Фрам», от широты 83° до 80° – всего 180 миль – прошел во льдах, пробираясь по полыньям.

Может быть, даже существует и великая полынья, о которой пишет Врангель; температуры нижних слоев воды, наблюдавшиеся Нансеном на «Фраме» наводят на некоторые соображения об этой полынье.

Рассматривая эту таблицу, мы видим, что до глубины 100 м температура воды остается одна и та же, около –1,5°. От 100 м она начинает подниматься, и на 200 м она достигает 0°, а на 260 м +0,34°. Температуру эту вода имеет до 500 м, после чего температура опять понижается. На 1800 м она достигает величины –0,60°, которую и сохраняет до дна.

Если бы, в прибавок к температурам, были объявлены еще и удельные веса воды, то мы сейчас же могли бы решить вопрос о том, откуда она пришла; но, к сожалению, удельных весов нет,[27] а потому заключение сделать затруднительно; тем не менее можно сказать, что теплая вода на 200–800 м должна быть солонее поверхностной, иначе она поднялась бы кверху, а не оставалась внизу. Так как в Ледовитом океане существует много причин к уменьшению солености, то очевидно, что вода, занимающая слой на 200–800 м, пришла из южных широт. Это же условие подтверждается и температурой воды.

Существование слоя теплой воды под холодною указывает, что в Ледовитом океане есть, действительно, течение, подобное тому, как в Босфоре. Поверхностная вода меньшей сравнительно солености, вследствие разности уровней, выходит обратно в Атлантический океан, унося с собою льды. Граница двух вод недостаточно резкая. От 100 до 260 м лежит промежуточный слой с температурою между холодною и теплою. Глубина 100 м чересчур велика, чтобы волнение могло эффектно перемешивать слои ниже его, если Ледовитый океан всегда покрыт льдами. Посему надо предположить, что или Ледовитый океан местами вскрывается на большом пространстве, чтобы перемешивающее действие волн достигало глубин ниже 100 м, или же в каком-нибудь месте Ледовитого океана существует обилие вод столь малой солености, что для восстановления равновесия слой этот тонок, и теплая вода приближается там к поверхности. Этого мнения я придерживаюсь.

Думаю, что нет ничего невероятного, если где-нибудь между полюсом и Беринговым проливом окажется область льда сравнительно малой толщины. Лед этот, будучи слаб, вследствие присутствия под ним поблизости теплой воды по временам может взламываться и образовывать ту полынью, которую видел Врангель зимою и поверье о которой всегда существовало.[28]

Подведя итоги всего сказанного выше, я пришел к заключению, что для следования по Ледовитому океану в летнее время нет надобности прибегать к 52 000 индикаторных сил и что достаточно ограничиться 20 000.

От широты 78°, в которой можно встретить летом лед, до полюса 720 миль. Авторитеты считают, что третья часть всего пространства не покрыта льдом, но мы предположим, что не покрыта льдом 1/4, то есть 180 миль, и по этому пространству ледоколы пойдут со скоростью 12 узлов, следовательно, пройдут это пространство в 15 часов; 1/5 пространства, то есть 144 мили, предположим заполненным полями одногодовалого льда, который зимою достиг 2,28 м, стаял на 1 м и летом имеет толщину 1,28 м, то есть 4,3 фута.

Предположим, что лед этот ослаблен сквозными каналами и трещинами и соответствует крепости зимнего льда в 3,5 фута, то есть на 20 % меньше. Ледокол в 20 000 сил пройдет такой лед со скоростью 4 узла. Следовательно, 144 мили потребуют 36 часов, 1/6 часть – 120 миль – предположим заполненной льдом двухгодовалым, толщиною зимой 2,61 м, а летом 1,61, что соответствует 5,3 фута. Отбавляя 20 % на сквозные каналы, получим 4,2 фута, которые ледокол пройдет со скоростью 3 узла в 40 часов, 1/6 часть, то есть 120 миль, предположим заполненной льдом в 3,05 м, то есть 10 футов. Отбросив 1 м на стаивание. получим 2,05, то есть 6,7 фута, отбрасывая 20 %, получим 5,4.

Этот лед ледокол пройдет со скоростью 2 узла в 60 часов, 1/6 часть, то есть 120 миль, предположим наполненной льдом в 3,6 м (12 футов); полагая 1 м на стаивание, получим 2,6 м (8,5 футов), а если отбросить 20 %, останется 6,9 фута, через которые ледокол пойдет со скоростью 1,3 узла и пройдет 120 миль в 92 часа. Остальные 36 миль, предположим, торосы, и скорость в них допустим лишь 3/4 узла. На прохождение 36 миль потребуется 48 часов. Итого на прохождение всех 720 миль потребуется 291 час или 12 суток и 3 часа, при скорости хода в 2,4 узла.

Предположение о возможности использования Северо-Восточного прохода или Северного морского пути впервые было высказано русским дипломатом Дмитрием Герасимовым в 1525 г. В середине XVI в. пройти Северным морским путем попробовали англичане X. Уиллоби, Р. Ченслер, Барроу, но смогли достичь только Новой Земли.

В XVIII в. теоретической разработкой этого вопроса серьезно занимался М. В. Ломоносов (см. «Краткое описание разных путешествий по северным морям и показание возможного проходу Сибирским океаном в Восточную Индию»). В XIX в. этот вопрос для России встал со всей остротой, а освоение Северного морского пути позволило бы снизить затраты на обслуживание портов Арктики и крупных рек Сибири. Ведь расстояние от Санкт-Петербурга до Владивостока через Суэцкий канал составляет свыше 23 тыс. км, а по Северному морскому пути оно составило бы только 14 тыс. км. Это соображение стало еще одной причиной того, что правительство решило поддержать проект Макарова и выделить необходимые средства для строительства ледокола «Ермак».

Весь вышеприведенный расчет составлен очень скупо относительно сопротивления. Предположено, что ледокол идет прямым курсом, тогда как в действительности он может выбирать путь через более легкий лед и полыньи. Даже при вышеприведенных предположениях требуется 12-дневный запас угля, для того чтобы пройти к полюсу. Ледокол может иметь такой запас, и если он возьмет с собой транспорт с углем, то возвращение его будет вполне обеспечено. Если же допустить, что курс будет избираться через полыньи и сравнительно тонкий лед и что, таким образом, удастся миновать и пройти полыньями половинное количество торосов и льда в 12 и 10 футов, то для прохода всего пути, если считать его удлиненным до 800 миль, потребуется 9 суток.

Предположим, что 20 000 сил достаточно, чтобы следовать по Ледовитому океану летом в каком угодно направлении. Является вопрос: следует ли построить один ледокол в 20 000 сил или лучше построить два ледокола в 10 000 сил каждый? Я держусь того мнения, что два среднего размера ледокола лучше, чем один большой. В море всякие случайности возможны, и при двух независимых судах дело будет поставлено гораздо надежнее. Надо, однако, чтобы оба ледокола давили на лед своей общей силою. Чтобы испытать такое пользование ледоколами, я обратился к директору Приморской дороги П. А. Авенариусу, который любезно предложил воспользоваться для опыта ледоколами, держащими сообщение между Кронштадтом и Лисьим Носом.

На корме одного из них сделана была деревянная подушка, в которую другой ледокол должен был упираться своим носом. Чтобы ледоколы не расходились, подано было два буксира накрест. Действие двух ледоколов, таким образом связанных, оказалось весьма практично, и сила действия двух ледоколов была двойная. Все, видевшие опыты, пришли к убеждению, что там, где действуют два ледокола, надо их ставить один в кильватер другому, чтобы получить двойную силу машины и двойную инерцию.

Если ледоколы ведут за собой грузовые пароходы, то каждый из них должен быть приспособлен к тому, чтобы следовать в кильватере вплотную, и по вступлении в лед все суда каравана, идущего через лед, должны быть поставлены вплотную и в таком виде следовать на всем пространстве ледяного покрова. При этих условиях никто не отстанет, и все машины будут служить для преодоления сопротивления, а инерция всех судов будет с пользою служить для разбития препятствий, которые встретятся передним ледоколом.

Плавание по Ледовитому океану вызывается потребностями науки, но постройка двух ледоколов, в 6000 тонн каждый, потребует таких затрат, на которые для одних научных целей средства найти невозможно. К счастью, есть практические цели, которые также требуют постройки больших ледоколов.

Россия природой поставлена в исключительные условия: почти все ее моря замерзают зимой, а Ледовитый океан покрыт льдом и в летнее время. Между тем, туда впадают главнейшие реки Сибири, и туда мог бы идти весь сбыт этой богатой страны. Если бы Ледовитый океан был открыт для плавания, то это дало бы весьма важные выгоды. Теперь Ледовитый океан заперт, но нельзя ли его открыть искусственным путем? Мысль такая высказывается не мною первым. Когда Виггинс докладывал в Техническом обществе о своем путешествии на Енисей, то великий князь Александр Михайлович сказал, что, по его мнению, дело с плаванием на Енисей стоит на шатких началах. Чтобы оно стало на прочных началах, нужны ледоколы.

При посредстве ледоколов мы можем поддерживать сообщение с Енисеем в течение всего лета. Теперь это производится случайными рейсами один раз в год, и для поощрения этих рейсов предпринимателям дают некоторые таможенные льготы. При посредстве ледоколов рейсы на Енисей можно поставить на правильный фундамент и вести их регулярно. Полагаю, что 1 или 15 июня (по старому стилю), когда устье Енисея очистится ото льда, можно было бы идти первым рейсом, а затем каждые 2 недели делать рейс и, таким образом, открыть грузовое пароходное сообщение Сибири со всем остальным миром.

Теперь, когда движение грузов случайное, находится достаточно грузов на несколько кораблей; когда же движение будет правильное, обмен грузов значительно возрастет. Сибирь так богата, а прирост населения как естественным путем, так и переселением идет так быстро, что грузов в скором времени найдется достаточно.

Мы, русские, богаты дешевым товаром, который не может быть перевозим на дальние расстояния по железным дорогам. Для такого товара нужно пароходное сообщение. Вследствие этого пароходное сообщение не будет конкурировать с железными дорогами, и открытие заграничного отпуска из бассейнов рек Енисея и Оби не уменьшит работу дорог, а, напротив того, увеличит ее, ибо с открытием водного пути край поднимется и промышленность в нем возрастет. Вопрос не в том, строить или не строить ледоколы для сообщения с Енисеем, а в том, строить их теперь или надо еще подождать. Надо думать, что два ледокола в 10 000 сил, начиная с 15 июня (по старому стилю), поведут караваны судов на Енисей со скоростью 5 узлов, а позднее ледяное препятствие будет встречаться лишь в немногих местах.

Есть еще одна насущная потребность, для удовлетворения которой требуются ледоколы. Теперь, когда Николаев, Одесса, Владивосток, Ревель и другие города расчищают себе путь ледоколами, один Петербург отстал от всех и все еще зимою заперт для пароходного сообщения. Кажется немножко странным, что все порты опередили в этом отношении Петербург. Инженер Р. А. Рунеберг делал по этому предмету доклад, но дело остановилось и, вероятно, не потому, что потребность в ледоколе не сознавалась, а потому, что дело это казалось трудноосуществимым. При посредстве ледоколов можно было бы установить еженедельные зимние рейсы грузовых пароходов в Петербург и обратно и, таким образом, дать Петербургу правильное зимнее пароходное сообщение, в котором он сильно нуждается, как многолюдный город и ближайший морской порт к Москве и ко всему нашему богатому мануфактурному району.

В настоящей лекции я старался представить перед вами картину постепенного расширения в применении ледоколов. Один порт после другого обзаводятся ледоколами, и видно общее усилие искусственным путем получить то, что природа отказалась дать путем естественным. Я также показал перед вами, до каких пределов может доходить крепость ледяных покровов, и вы, вероятно, присоединитесь к моему мнению, что силою можно разбивать всякий ледяной покров. Вопрос не в том, можно ли лед разбить, а в том – стоит ли его разбивать.

Я наметил три крупных дела, которые могут быть выполнены ледоколами:

1) Научное исследование всего Ледовитого океана, на котором огромная область, 2 тысячи верст длиной и 1 1/2 тысячи шириной, ни разу не была посещена ни одним путешественником.

2) Открытие правильного грузового пароходного сообщения с Обью и Енисеем в летнее время.

3) Открытие правильного грузового пароходного сообщения с Петербургом в зимнее время.

Эти три цели, по моему мнению, могут быть удовлетворены постройкою двух ледоколов, в 6000 тонн, с машинами в 10 000 сил каждый. Ни одна нация не заинтересована в ледоколах столько, сколько Россия. Природа заковала наши моря льдами, но техника дает теперь огромные средства, и надо признать, что в настоящее время ледяной покров не представляет более непреодолимого препятствия к судоходству.

Данный текст является ознакомительным фрагментом.