МЕХАНИЧЕСКАЯ МОДЕЛЬ ДЛЯ ЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ
МЕХАНИЧЕСКАЯ МОДЕЛЬ ДЛЯ ЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ
Статья «О фарадеевских силовых линиях» требовала продолжения. Электрогидравлические аналогии дали многое — с их помощью удалось записать полезные дифференциальные уравнения. Но не все отражали электрогидравлические аналогии. Никак не укладывался в их рамки важнейший закон электромагнитной индукции.
Как можно наглядно представить себе то, что при изменении магнитного поля возникает поле электрическое?
Нужно было придумать новый, облегчающий понимание процесса вспомогательный механизм, отражающий одновременно и поступательное движение токов, и вращательный, вихревой характер магнитного поля.
И то, что придумал для замены Максвелл, поражало.
Поражало грубой механичностью. Громоздкостью, неповоротливостью. Новая модель была вызывающе одиозной. Но работоспособной!
Она давала механическую модель явления электромагнитной индукции и «электротонического состояния»35 Фарадея, состояния, которое нельзя было обнаружить ни одним из известных способов, пока оно оставалось неизменным.
Новая модель Максвелла — это среда, охваченная вихревым движением. Вихри так малы, что умещаются внутри молекул. Вращающиеся «молекулярные вихри» производят магнитное поле. Направление осей вихрей совпадает с силовыми линиями, а сами они могут быть представлены как тоненькие вращающиеся цилиндрики. Скорость вращения вихрей определяет величину магнитной силы.
И тут возникала трудность. Трудность чисто механического порядка. Внешние, соприкасающиеся части вихрей должны двигаться в противоположных направлениях! То есть препятствовать взаимному движению.
Это напоминало такое положение, как если бы конструктор механизма поместил в непосредственной близости две шестеренки, вращающиеся в одну сторону. У них непременно должны были бы переломаться все зубья!
Чтобы избежать этого, Максвелл, подружившийся с шестеренками и часовыми колесиками еще в детстве, решил использовать «холостые колеса».
Как можно обеспечить вращение двух рядом расположенных шестеренок в одну сторону? Нужно поместить между ними небольшие передаточные шестеренки, «холостые колеса»!
Максвелл предположил, что между рядами молекулярных вихрей помещен слой мельчайших шарообразных частичек, способных к вращению. Теперь вихри могли вращаться в одном направлении — «смазка» давала себя знать. Вихри взаимодействовали между собой, но вращались в одном направлении.
Роль «паразитных шестеренок» оказалась впоследствии куда более важной, чем ожидалось вначале, и вообще едва ли не важнейшей во всей этой модели. Во-первых, Максвелл осознанно называет эти «холостые колеса», «смазочные шарики» между цилиндрами — «частичками электричества», а движение их — «поток частичек электричества» — признает электрическим током. (Уже само упоминание в те времена о «частичках электричества», представляющих собой электрический ток, было прозрением гения, предсказанием грядущих электронов. Но это была лишь частность теории. Не главное. Главное было в другом.)
«Холостые колеса», вращаясь и двигаясь поступательно, оказались способными к объяснению многих действий электричества и магнетизма.
Если к шарикам приложена некая внешняя сила — электрическое поле, она заставит их двигаться поступательно — возникает электрический ток. Тогда придут во вращение и цилиндрики — появится магнитное поле. Так подтвердилась на модели гипотеза Ампера — токовая природа магнитных явлений. Так утверждалась мысль Эрстеда об их вихреобразном характере.
Цилиндры всегда вращались в направлении, перпендикулярном направлению движения шариков36, и это свидетельствовало о том, что магнитное поле действует под прямым углом по отношению к направлению тока.
Сенсационная перпендикулярность направлений тока и создаваемого им магнитного поля, перпендикулярность, выражаемая введенным Максвеллом «правилом буравчика», впервые получила в этой модели механическое истолкование.
Дело в том, что опыт Эрстеда нес не только связь между электричеством и магнетизмом. Не напрасно Эрстед в своем мемуаре перечисляет свидетелей опыта: то, что открылось ему, не лезло в рамки ньютоновских законов и прямо нарушало третий из них: направления возмущающей силы — электричества (определяемого направлением провода) и силы реакции — магнетизма (определяемого направлением магнитной стрелки) были у Эрстеда перпендикулярны. Впервые физики, сгрудившиеся у лабораторного стола Эрстеда, видели «противодействие», по направлению не противоположное «действию».
Эрстед неправильно объяснил свой опыт, но он заронил глубокую мысль — мысль о вихревом характере электромагнитных явлений.
«Вихреобразность» процесса, вызывающего в памяти водоворот, вихрь, спираль, долго не находила сторонников, и даже Фарадей поначалу не оценил эту мысль. Он долго был убежден в том, что силы, действующие между проводниками с током и магнитной стрелкой, — это силы притяжения и отталкивания, подчиняющиеся законам Ньютона.
Модель Максвелла наглядно отражала подмеченный Эрстедом вихреобразный характер поля.
Вращательное движение в модели передается от частиц вихрям и от вихрей — частицам. Но это противоречит ранее принятому Максвеллом предположению, что между вихрями и частицами нет иного взаимодействия, кроме трения качения! Понимая условность, вспомогательный характер модели, Максвелл не останавливается на этой «мелочи» — модель раскрывает все новые и новые свои стороны, оборачивается открытием новых захватывающих свойств электромагнетизма, и вряд ли стоит на этом прекрасном фоне искать способ преодоления чисто механического противоречия!
Механическая громоздкая модель могла демонстрировать и такие электромагнитные явления, как электрическое отталкивание и притяжение.
Но эти эффекты уже не были во главе угла. Они были низведены с пьедестала, куда вознесли их Ампер и Вебер, построившие именно на взаимодействии токов всю свою электродинамику. Притяжение и отталкивание стали «рядовыми» электромагнитными явлениями.
Зато почетное место в новой модели заняла электромагнитная индукция.
Первоначальная цель, которую поставил Максвелл при построении своей механической модели, — проиллюстрировать электромагнитную индукцию Фарадея — была достигнута.
Но и с блеском перекрыта.
Джеймс Клерк Максвелл понял это, когда начал изучать поведение своей механической модели в случае проводников и изоляторов-диэлектриков.
«Тела, которые препятствуют протеканию сквозь них электрического тока, называются изоляторами. Но хотя сквозь них не течет электричество, сквозь них распространяются электрические эффекты, причем уровень этих эффектов зависит от природы тела...»
Электрические явления могут происходить и в среде, препятствующей прохождению тока, — в диэлектрике, в изоляторе.
Пусть «холостые колеса» не могли в этих средах под действием электрического поля двигаться поступательно. Но они при наложении и снятии электрического поля смещались со своих мест. Максвелл зорко углядел в этом свойстве модели аналогию с поляризацией молекул диэлектрика в результате смещения зарядов в самих молекулах.
Большая научная смелость потребовалась Максвеллу, чтобы отождествить это смещение связанных молекулярных зарядов с их движением, с электрическим током. Ведь этого тока — тока смещения — никто еще не наблюдал. Он совсем не напоминал известные физикам токи в проводниках. И необходимость его введения, казалось тогда многим, ничем решительно не вызывалась.
Но, отождествив смещение зарядов в диэлектриках с каким-то током, током смещения, Максвелл неизбежно должен был сделать следующий шаг — признать за этим током способность к созданию собственного магнитного поля, сделать этот ток, ток смещения зарядов, равноправным с обычным током, текущим по проводнику.
Так, наконец, впервые выявилась неизвестная Амперу и Веберу связь между электростатикой и электродинамикой, связь между покоящимся и движущимся электричеством.
«Холостые колеса» жили собственной жизнью и, объяснив одно явление, предсказывали существование еще одного, ранее никому не известного.
Механическая модель упрямо приводила, приводила движением «холостых колес» и магнитных цилиндриков, к странному выводу: изменение электрического поля приводит к появлению магнитного поля.
То есть к положению, полностью симметричному фарадеевскому: изменение магнитного поля приводит к появлению электрического поля.
На своей громоздкой модели Максвелл обнаружил эффект, обратный и равный по значению электромагнитной индукции!
Это было со времен Фарадея величайшее открытие в области электричества.
Знаменитый английский физик Дж.Дж.Томсон сказал на торжествах, посвященных столетию со дня рождения Максвелла: «Максвелл, используя свою модель, обнаружил, что модель свидетельствует о следующем — изменения в электрической силе будут вызывать магнитную силу. Введение и развитие этой идеи было величайшим вкладом Максвелла в физику. Важность шага, сделанного Максвеллом, обнаруживается тем фактом, что в электромагнитной теории, принятой до него, электрические волны не существовали, в то время как в его теории любые изменения электрической и магнитной силы посылали волны, распространяющиеся в пространстве...»
Какова роль этой модели? Действительно ли Максвелл считал, что мир состоит из бессчетного числа шестеренок и паразитных колес? Абсолютизировал ли он свою модель? Отличался ли от Томсона в толковании ценности моделей? Что было раньше — модель, физические соотношения, факты или уравнения? Ответ — в самой работе. Максвелл пишет, что модель использовалась им для того, чтобы «вывести математические соотношения между электротоническим состоянием, магнетизмом, электрическими токами и электродвижущей силой, используя механические иллюстрации для того, чтобы помочь воображению, но не в качестве объяснения явлений».
Это совсем непохоже на то, что частенько говаривал Вильям Томсон.
— Мне кажется, что настоящий смысл вопроса: понимаете ли вы такое-то физическое положение? — будет такой: можете ли вы сделать соответствующую механическую модель?.. Я никогда не чувствую себя удовлетворенным, если не могу себе представить механической модели данного явления; если я могу представить себе такую модель — значит, понимаю вопрос; если не могу — значит, я не понимаю его.
Максвелл не в пример своему старшему другу был противником абсолютизирования моделей.
Модели были его строительными лесами, которым со временем предстояло пасть и быть забытыми. Их нельзя было оставлять, ибо они препятствовали перестройке и расширению здания электромагнитной теории.
А об отношении самого Максвелла к своей модели прекрасно свидетельствуют строчки из его письма Питеру Тэту:
«Модель явления так относится к истинному явлению, как относится модель солнечной системы, работающая на принципе часового механизма, к самой солнечной системе».
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Звоночек Подлинная история из жизни Президента Сызновской Академии паранормальных явлений Леонида Кологрива
Звоночек Подлинная история из жизни Президента Сызновской Академии паранормальных явлений Леонида Кологрива Говорили, что он будто бы бухгалтер. Михаил Булгаков Не рискну утверждать, будто в каждом бухгалтере до поры до времени спит Петлюра, но кто-то в ком-то спит
Глава 11. МЕХАНИЧЕСКАЯ НОГА
Глава 11. МЕХАНИЧЕСКАЯ НОГА Как-то в приемном зале Таврического дворца Кулибин познакомился с поручиком Непейцыным. Это был бравый офицер-артиллерист, не раз участвовавший в боях с турками. В сражении под Очаковом он потерял ногу выше колена и теперь ходил на
Чья модель?
Чья модель? Почему же, несмотря на все выходки Лукашенко, Путин никогда не критикует его политику? И даже вопросы журналистов по белорусским проблемам старательно отклоняет, переводя на нейтральные рельсы. Его спрашивают про то, как он относится к намерению Лукашенко
Закон парных явлений
Закон парных явлений Не помню, кто (но, очевидно, наблюдательный человек) заметил, что в событиях, происшествиях и особенно в несчастных случаях и преступлениях наблюдается какая-то парность. Если поступил один с очень редким видом травмы, то жди вскоре и второго с такой же
Глава 2 Битва электрических токов
Глава 2 Битва электрических токов Уже вскоре после ухода Теслы из компании Эдисона между ними началось противоборство, которое получило название «войны электрических токов» — Эдисон стремился обеспечить Америку и весь мир постоянным током, а Тесла — переменным.
Политика и деловые операции электрических монополий
Политика и деловые операции электрических монополий Министерство иностранных дел не подавало признаков жизни, но Раумер был настроен весьма оптимистично. Для того чтобы избавить меня от необходимости вновь попасть в зависимость от отца, он временно пристроил меня в
Абрам МОДЕЛЬ
Абрам МОДЕЛЬ Искусный аналитик Не стало Абрама Яковлевича Моделя. Ушел последний из числа тех, кто родился в прошлом веке, а завоевал звание шахматного мастера после Октябрьской революции.Первую партию мы с ним сыграли летом 1925 года в шахматном клубе Ленинградского
Закон парных явлений
Закон парных явлений Не помню, кто (но, очевидно, наблюдательный человек) заметил, что в событиях, происшествиях и особенно в несчастных случаях и преступлениях наблюдается какая-то парность. Если поступил один с очень редким видом травмы, то жди вскоре и второго с такой же
15. Модель
15. Модель Первый заработок Нормы в качестве фотомодели был очень скромным. Во время фотосессии на авиационном заводе она заработала всего 10 долларов. Съёмка продолжалась два часа – получилось по 5 долларов за каждый час. В агентстве «Голубая книга» ей платили больше.
Модель первая
Модель первая Команду телезрителей с успехом могут заменить сами знатоки. Для этого достаточно создать не одну, а две команды знатоков. Эта схема, этот конфликт сразу будут понятны всем, ибо он привычен, традиционен.Скажем, в спорте мы все время видим борьбу однородных
Модель четвертая
Модель четвертая "Зрители против зрителей".А можно ли создать еще более открытую модель, чем модель "знатоки против зрителей"? Принципиально можно. Ведь остается еще некий закулисный, темный для публики момент — сами знатоки. Откуда они берутся? Кто их отобрал? Какими
Прохождение замеров и регулировки электрических полей
Прохождение замеров и регулировки электрических полей В этом случае проходит два этапа. Первый замеры и регулировка электрических полей при стоянке на двух швартовных бочках. Только одно условие: швартовные концы должны быть либо растительными, либо синтетическими.
Механическая лаборатория путейского института
Механическая лаборатория путейского института Еще летом во время лагерных занятий я побывал у профессора Брандта и попросил его устроить меня ассистентом в Механической Лаборатории Института, находившейся под общим заведыванием профессора Белелюбского, известного
Модель
Модель Драгоценное семя будущего цветущего растения — модель Здания, стоявшая в Бродбекхаусе. Если проскользнугь внутрь, под купол модели, то здесь дышится совсем другим воздухом; так бывает, когда стоишь перед величайшими произведениями искусства прошлого, а иногда во
«Из мира яркого явлений…»
«Из мира яркого явлений…» Из мира яркого явлений Меня увел мой властный гнев. И вот я жил, оцепенев, Среди мечтаний и видений. И я творил миры иные, Иных законов, светов, сил. Да, я творил и я царил, Оковы свергнув вековые! Но паутину мирозданья Размел, развеял вихрь